These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35290344)

  • 21. Deep learning for hologram generation.
    Liu SC; Chu D
    Opt Express; 2021 Aug; 29(17):27373-27395. PubMed ID: 34615155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liquid lens based holographic camera for real 3D scene hologram acquisition using end-to-end physical model-driven network.
    Wang D; Li ZS; Zheng Y; Zhao YR; Liu C; Xu JB; Zheng YW; Huang Q; Chang CL; Zhang DW; Zhuang SL; Wang QH
    Light Sci Appl; 2024 Feb; 13(1):62. PubMed ID: 38424072
    [TBL] [Abstract][Full Text] [Related]  

  • 23. End-to-end learning of 3D phase-only holograms for holographic display.
    Shi L; Li B; Matusik W
    Light Sci Appl; 2022 Aug; 11(1):247. PubMed ID: 35922407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-difference-based compression of phase-only holograms for holographic three-dimensional display.
    Gu H; Jin G
    Opt Express; 2018 Dec; 26(26):33592-33603. PubMed ID: 30650792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Layered holographic stereogram based on inverse Fresnel diffraction.
    Zhang H; Zhao Y; Cao L; Jin G
    Appl Opt; 2016 Jan; 55(3):A154-9. PubMed ID: 26835948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 360-degree color hologram generation for real 3D objects.
    Chang EY; Choi J; Lee S; Kwon S; Yoo J; Park M; Kim J
    Appl Opt; 2018 Jan; 57(1):A91-A100. PubMed ID: 29328134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-step acceleration calculation method to generate curved holograms using the intermediate plane in a three-dimensional holographic display.
    Pi D; Liu J; Yu S
    Appl Opt; 2021 Sep; 60(25):7640-7647. PubMed ID: 34613232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Focus prediction in digital holographic microscopy using deep convolutional neural networks.
    Pitkäaho T; Manninen A; Naughton TJ
    Appl Opt; 2019 Feb; 58(5):A202-A208. PubMed ID: 30873979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. See-through holographic display with randomly distributed partial computer generated holograms.
    Mu CT; Tseng SH; Chen CH
    Opt Express; 2020 Nov; 28(24):35674-35681. PubMed ID: 33379678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-valued layer-based hologram calculation.
    Yasuki D; Shimobaba T; Makowski M; Suszek J; Sypek M; Kakue T; Ito T
    Opt Express; 2022 Feb; 30(5):7821-7830. PubMed ID: 35299536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional computer holography enabled from a single 2D image.
    Chang C; Zhu D; Li J; Wang D; Xia J; Zhang X
    Opt Lett; 2022 May; 47(9):2202-2205. PubMed ID: 35486760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Holographic and speckle encryption using deep learning.
    Wang X; Wang W; Wei H; Xu B; Dai C
    Opt Lett; 2021 Dec; 46(23):5794-5797. PubMed ID: 34851892
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-task convolutional neural network based on the combination of the U-Net and a diffraction propagation model for phase hologram design with suppressed speckle noise.
    Sun X; Mu X; Xu C; Pang H; Deng Q; Zhang K; Jiang H; Du J; Yin S; Du C
    Opt Express; 2022 Jan; 30(2):2646-2658. PubMed ID: 35209400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovering dense 3D point clouds from single endoscopic image.
    Xi L; Zhao Y; Chen L; Gao QH; Tang W; Wan TR; Xue T
    Comput Methods Programs Biomed; 2021 Jun; 205():106077. PubMed ID: 33910150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep learning-based hologram generation using a white light source.
    Go T; Lee S; You D; Lee SJ
    Sci Rep; 2020 Jun; 10(1):8977. PubMed ID: 32488035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regular effective hologram regions for computer generated holography.
    Xu S; Farbiz F; Solanki S; Liang X; Pan Y; Xu X
    Appl Opt; 2009 Dec; 48(34):H196-202. PubMed ID: 19956291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A deep learning approach for the fast generation of acoustic holograms.
    Lin Q; Wang J; Cai F; Zhang R; Zhao D; Xia X; Wang J; Zheng H
    J Acoust Soc Am; 2021 Apr; 149(4):2312. PubMed ID: 33940859
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unsupervised learning of depth estimation from imperfect rectified stereo laparoscopic images.
    Luo H; Wang C; Duan X; Liu H; Wang P; Hu Q; Jia F
    Comput Biol Med; 2022 Jan; 140():105109. PubMed ID: 34891097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning denoising diffusion probabilistic model applied to holographic data synthesis.
    Velez-Zea A; Gutierrez-Cespedes CD; Barrera-Ramírez JF
    Opt Lett; 2024 Feb; 49(3):514-517. PubMed ID: 38300047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.