These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35290737)
1. Deep Learning-Assisted Peak Curation for Large-Scale LC-MS Metabolomics. Gloaguen Y; Kirwan JA; Beule D Anal Chem; 2022 Mar; 94(12):4930-4937. PubMed ID: 35290737 [TBL] [Abstract][Full Text] [Related]
2. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rafiei A; Sleno L Rapid Commun Mass Spectrom; 2015 Jan; 29(1):119-27. PubMed ID: 25462372 [TBL] [Abstract][Full Text] [Related]
3. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC-MS metabolomics data. Chetnik K; Petrick L; Pandey G Metabolomics; 2020 Oct; 16(11):117. PubMed ID: 33085002 [TBL] [Abstract][Full Text] [Related]
4. Deep Neural Networks for Classification of LC-MS Spectral Peaks. Kantz ED; Tiwari S; Watrous JD; Cheng S; Jain M Anal Chem; 2019 Oct; 91(19):12407-12413. PubMed ID: 31483992 [TBL] [Abstract][Full Text] [Related]
5. PeakDetective: A Semisupervised Deep Learning-Based Approach for Peak Curation in Untargeted Metabolomics. Stancliffe E; Patti GJ Anal Chem; 2023 Jun; 95(25):9397-9403. PubMed ID: 37314824 [TBL] [Abstract][Full Text] [Related]
6. 3D-MSNet: a point cloud-based deep learning model for untargeted feature detection and quantification in profile LC-HRMS data. Wang R; Lu M; An S; Wang J; Yu C Bioinformatics; 2023 May; 39(5):. PubMed ID: 37071700 [TBL] [Abstract][Full Text] [Related]
7. G-Aligner: a graph-based feature alignment method for untargeted LC-MS-based metabolomics. Wang R; Lu M; An S; Wang J; Yu C BMC Bioinformatics; 2023 Nov; 24(1):431. PubMed ID: 37964228 [TBL] [Abstract][Full Text] [Related]
8. MetaPro: a web-based metabolomics application for LC-MS data batch inspection and library curation. An S; Wang R; Lu M; Zhang C; Liu H; Wang J; Xie C; Yu C Metabolomics; 2023 Jun; 19(6):57. PubMed ID: 37289291 [TBL] [Abstract][Full Text] [Related]
9. An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data. Iravani S; Conrad TOF IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):151-161. PubMed ID: 35007196 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning for the Precise Peak Detection in High-Resolution LC-MS Data. Melnikov AD; Tsentalovich YP; Yanshole VV Anal Chem; 2020 Jan; 92(1):588-592. PubMed ID: 31841624 [TBL] [Abstract][Full Text] [Related]
11. Automated optimization of XCMS parameters for improved peak picking of liquid chromatography-mass spectrometry data using the coefficient of variation and parameter sweeping for untargeted metabolomics. Manier SK; Keller A; Meyer MR Drug Test Anal; 2019 Jun; 11(6):752-761. PubMed ID: 30479047 [TBL] [Abstract][Full Text] [Related]
12. Automated Annotation of Untargeted All-Ion Fragmentation LC-MS Metabolomics Data with MetaboAnnotatoR. Graça G; Cai Y; Lau CE; Vorkas PA; Lewis MR; Want EJ; Herrington D; Ebbels TMD Anal Chem; 2022 Mar; 94(8):3446-3455. PubMed ID: 35180347 [TBL] [Abstract][Full Text] [Related]
13. LC-MS untargeted metabolomics assesses the delayed response of glufosinate treatment of transgenic glufosinate resistant (GR) buffalo grasses (Stenotaphrum secundatum L.). Boonchaisri S; Rochfort S; Stevenson T; Dias DA Metabolomics; 2021 Feb; 17(3):28. PubMed ID: 33609206 [TBL] [Abstract][Full Text] [Related]
14. ipaPy2: Integrated Probabilistic Annotation (IPA) 2.0-an improved Bayesian-based method for the annotation of LC-MS/MS untargeted metabolomics data. Del Carratore F; Eagles W; Borka J; Breitling R Bioinformatics; 2023 Jul; 39(7):. PubMed ID: 37490466 [TBL] [Abstract][Full Text] [Related]
15. Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing. DeFelice BC; Mehta SS; Samra S; Čajka T; Wancewicz B; Fahrmann JF; Fiehn O Anal Chem; 2017 Mar; 89(6):3250-3255. PubMed ID: 28225594 [TBL] [Abstract][Full Text] [Related]
16. Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Yu T; Jones DP Bioinformatics; 2014 Oct; 30(20):2941-8. PubMed ID: 25005748 [TBL] [Abstract][Full Text] [Related]
17. Image Processing and Machine Learning for Automated Identification of Chemo-/Biomarkers in Chromatography-Mass Spectrometry. Jirayupat C; Nagashima K; Hosomi T; Takahashi T; Tanaka W; Samransuksamer B; Zhang G; Liu J; Kanai M; Yanagida T Anal Chem; 2021 Nov; 93(44):14708-14715. PubMed ID: 34704450 [TBL] [Abstract][Full Text] [Related]
18. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics. Chaleckis R; Meister I; Zhang P; Wheelock CE Curr Opin Biotechnol; 2019 Feb; 55():44-50. PubMed ID: 30138778 [TBL] [Abstract][Full Text] [Related]
19. SimExTargId: a comprehensive package for real-time LC-MS data acquisition and analysis. Edmands WMB; Hayes J; Rappaport SM Bioinformatics; 2018 Oct; 34(20):3589-3590. PubMed ID: 29790936 [TBL] [Abstract][Full Text] [Related]
20. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Cui L; Lu H; Lee YH Mass Spectrom Rev; 2018 Nov; 37(6):772-792. PubMed ID: 29486047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]