These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 35290748)
21. Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review. Mujika I; Sharma AP; Stellingwerff T Sports Med; 2019 Nov; 49(11):1651-1669. PubMed ID: 31452130 [TBL] [Abstract][Full Text] [Related]
22. Acute normobaric hypoxia stimulates erythropoietin release. Mackenzie RW; Watt PW; Maxwell NS High Alt Med Biol; 2008; 9(1):28-37. PubMed ID: 18331218 [TBL] [Abstract][Full Text] [Related]
23. The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. Man MC; Ganera C; Bărbuleț GD; Krzysztofik M; Panaet AE; Cucui AI; Tohănean DI; Alexe DI Int J Environ Res Public Health; 2021 Sep; 18(18):. PubMed ID: 34574408 [TBL] [Abstract][Full Text] [Related]
25. Effects of chronic hypoxia and exercise on plasma erythropoietin in high-altitude residents. Schmidt W; Spielvogel H; Eckardt KU; Quintela A; Peñaloza R J Appl Physiol (1985); 1993 Apr; 74(4):1874-8. PubMed ID: 8514706 [TBL] [Abstract][Full Text] [Related]
26. Simulated rugby performance at 1550-m altitude following adaptation to intermittent normobaric hypoxia. Hamlin MJ; Hinckson EA; Wood MR; Hopkins WG J Sci Med Sport; 2008 Nov; 11(6):593-9. PubMed ID: 17719848 [TBL] [Abstract][Full Text] [Related]
27. Long-term exposure to intermittent hypoxia results in increased hemoglobin mass, reduced plasma volume, and elevated erythropoietin plasma levels in man. Heinicke K; Prommer N; Cajigal J; Viola T; Behn C; Schmidt W Eur J Appl Physiol; 2003 Feb; 88(6):535-43. PubMed ID: 12560952 [TBL] [Abstract][Full Text] [Related]
28. Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement. Chapman RF; Karlsen T; Resaland GK; Ge RL; Harber MP; Witkowski S; Stray-Gundersen J; Levine BD J Appl Physiol (1985); 2014 Mar; 116(6):595-603. PubMed ID: 24157530 [TBL] [Abstract][Full Text] [Related]
29. The feed-back regulation of erythropoietin production in healthy humans. Klausen T Dan Med Bull; 1998 Sep; 45(4):345-53. PubMed ID: 9777287 [TBL] [Abstract][Full Text] [Related]
31. Comparative response of EPO and soluble transferrin receptor at high altitude. Robach P; Fulla Y; Westerterp KR; Richalet JP Med Sci Sports Exerc; 2004 Sep; 36(9):1493-8; discussion 1492. PubMed ID: 15354029 [TBL] [Abstract][Full Text] [Related]
32. Association between serum concentrations of hypoxia inducible factor responsive proteins and excessive erythrocytosis in high altitude Peru. Painschab MS; Malpartida GE; Dávila-Roman VG; Gilman RH; Kolb TM; León-Velarde F; Miranda JJ; Checkley W High Alt Med Biol; 2015 Mar; 16(1):26-33. PubMed ID: 25760230 [TBL] [Abstract][Full Text] [Related]
37. Kidney-synthesized erythropoietin is the main source for the hypoxia-induced increase in plasma erythropoietin in adult humans. Lundby AK; Keiser S; Siebenmann C; Schäffer L; Lundby C Eur J Appl Physiol; 2014 Jun; 114(6):1107-11. PubMed ID: 24531592 [TBL] [Abstract][Full Text] [Related]
38. High altitude training of dogs results in elevated erythropoietin and endothelin-1 serum levels. Glaus TM; Grenacher B; Koch D; Reiner B; Gassmann M Comp Biochem Physiol A Mol Integr Physiol; 2004 Jul; 138(3):355-61. PubMed ID: 15313491 [TBL] [Abstract][Full Text] [Related]
39. An evaluation of the concept of living at moderate altitude and training at sea level. Hahn AG; Gore CJ; Martin DT; Ashenden MJ; Roberts AD; Logan PA Comp Biochem Physiol A Mol Integr Physiol; 2001 Apr; 128(4):777-89. PubMed ID: 11282321 [TBL] [Abstract][Full Text] [Related]
40. Military applications of hypoxic training for high-altitude operations. Muza SR Med Sci Sports Exerc; 2007 Sep; 39(9):1625-31. PubMed ID: 17805096 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]