BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35290799)

  • 1. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria.
    Fung TS; Chakrabarti R; Kollasser J; Rottner K; Stradal TEB; Kage F; Higgs HN
    Curr Biol; 2022 Apr; 32(7):1577-1592.e8. PubMed ID: 35290799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct actin filament populations have effects on mitochondria, with differences in stimuli and assembly factors.
    Fung TS; Ji WK; Higgs HN; Chakrabarti R
    J Cell Sci; 2019 Sep; 132(18):. PubMed ID: 31413070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial dysfunction triggers actin polymerization necessary for rapid glycolytic activation.
    Chakrabarti R; Fung TS; Kang T; Elonkirjo PW; Suomalainen A; Usherwood EJ; Higgs HN
    J Cell Biol; 2022 Nov; 221(11):. PubMed ID: 36102863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. INF2-mediated actin polymerization at the ER stimulates mitochondrial calcium uptake, inner membrane constriction, and division.
    Chakrabarti R; Ji WK; Stan RV; de Juan Sanz J; Ryan TA; Higgs HN
    J Cell Biol; 2018 Jan; 217(1):251-268. PubMed ID: 29142021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multiple links between actin and mitochondria.
    Fung TS; Chakrabarti R; Higgs HN
    Nat Rev Mol Cell Biol; 2023 Sep; 24(9):651-667. PubMed ID: 37277471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self-cleavage.
    Zhang K; Li H; Song Z
    EMBO Rep; 2014 May; 15(5):576-85. PubMed ID: 24719224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes.
    Basu D; Le J; Zakharova T; Mallery EL; Szymanski DB
    Proc Natl Acad Sci U S A; 2008 Mar; 105(10):4044-9. PubMed ID: 18308939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal Degradation of YME1L and OMA1 Adapts Mitochondrial Proteolytic Activity during Stress.
    Rainbolt TK; Lebeau J; Puchades C; Wiseman RL
    Cell Rep; 2016 Mar; 14(9):2041-2049. PubMed ID: 26923599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homeostatic actin cytoskeleton networks are regulated by assembly factor competition for monomers.
    Burke TA; Christensen JR; Barone E; Suarez C; Sirotkin V; Kovar DR
    Curr Biol; 2014 Mar; 24(5):579-85. PubMed ID: 24560576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired OMA1-dependent cleavage of OPA1 and reduced DRP1 fission activity combine to prevent mitophagy in cells that are dependent on oxidative phosphorylation.
    MacVicar TD; Lane JD
    J Cell Sci; 2014 May; 127(Pt 10):2313-25. PubMed ID: 24634514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actin polymerization downstream of integrins: signaling pathways and mechanotransduction.
    Romero S; Le Clainche C; Gautreau AM
    Biochem J; 2020 Jan; 477(1):1-21. PubMed ID: 31913455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capping protein is dispensable for polarized actin network growth and actin-based motility.
    Abou-Ghali M; Kusters R; Körber S; Manzi J; Faix J; Sykes C; Plastino J
    J Biol Chem; 2020 Nov; 295(45):15366-15375. PubMed ID: 32868296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle.
    Zhang W; Bhetwal BP; Gunst SJ
    J Physiol; 2018 Aug; 596(16):3617-3635. PubMed ID: 29746010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formin-binding proteins: modulators of formin-dependent actin polymerization.
    Aspenström P
    Biochim Biophys Acta; 2010 Feb; 1803(2):174-82. PubMed ID: 19589360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FMNL2 drives actin-based protrusion and migration downstream of Cdc42.
    Block J; Breitsprecher D; Kühn S; Winterhoff M; Kage F; Geffers R; Duwe P; Rohn JL; Baum B; Brakebusch C; Geyer M; Stradal TE; Faix J; Rottner K
    Curr Biol; 2012 Jun; 22(11):1005-12. PubMed ID: 22608513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formins as effector proteins of Rho GTPases.
    Kühn S; Geyer M
    Small GTPases; 2014; 5():e29513. PubMed ID: 24914801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition and Synergy of Arp2/3 and Formins in Nucleating Actin Waves.
    Le Chua X; Tong CS; Xǔ XJ; Su M; Xiao S; Wu X; Wu M
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerization power: effectors of actin polymerization as regulators of T lymphocyte migration through complex environments.
    Thompson SB; Waldman MM; Jacobelli J
    FEBS J; 2022 Oct; 289(20):6154-6171. PubMed ID: 34273243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enteropathogenic E. coli relies on collaboration between the formin mDia1 and the Arp2/3 complex for actin pedestal biogenesis and maintenance.
    Velle KB; Campellone KG
    PLoS Pathog; 2018 Dec; 14(12):e1007485. PubMed ID: 30550556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formins specify membrane patterns generated by propagating actin waves.
    Ecke M; Prassler J; Tanribil P; Müller-Taubenberger A; Körber S; Faix J; Gerisch G
    Mol Biol Cell; 2020 Mar; 31(5):373-385. PubMed ID: 31940262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.