BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 3529087)

  • 1. Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA.
    Normanly J; Masson JM; Kleina LG; Abelson J; Miller JH
    Proc Natl Acad Sci U S A; 1986 Sep; 83(17):6548-52. PubMed ID: 3529087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein engineering with synthetic Escherichia coli amber suppressor genes.
    Miller JH; Kleina LG; Masson JM; Normanly J; Abelson J
    Genome; 1989; 31(2):905-8. PubMed ID: 2483696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency.
    Kleina LG; Masson JM; Normanly J; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):705-17. PubMed ID: 2193162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity.
    Normanly J; Kleina LG; Masson JM; Abelson J; Miller JH
    J Mol Biol; 1990 Jun; 213(4):719-26. PubMed ID: 2141650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement of anticodon loop nucleotides to produce functional tRNAs: amber suppressors derived from yeast tRNAPhe.
    Bruce AG; Atkins JF; Wills N; Uhlenbeck O; Gesteland RF
    Proc Natl Acad Sci U S A; 1982 Dec; 79(23):7127-31. PubMed ID: 6961400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression.
    Steege DA
    Nucleic Acids Res; 1983 Jun; 11(11):3823-32. PubMed ID: 6344015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of nonsense suppression to generate altered proteins.
    Miller JH
    Methods Enzymol; 1991; 208():543-63. PubMed ID: 1779848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln.
    Inokuchi H; Yamao F; Sakano H; Ozeki H
    J Mol Biol; 1979 Aug; 132(4):649-62. PubMed ID: 160949
    [No Abstract]   [Full Text] [Related]  

  • 10. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a composite tRNA gene by anticodon loop transplant.
    Yarus M; McMillan C; Cline S; Bradley D; Snyder M
    Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5092-6. PubMed ID: 6254058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of amber suppressor tRNAs appropriate for incorporation of nonnatural amino acids.
    Taira H; Matsushita Y; Kojima K; Hohsaka T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):233-4. PubMed ID: 17150903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amber codon-mediated expanded saturation mutagenesis of proteins using a cell-free translation system.
    Shozen N; Watanabe T; Hohsaka T
    J Biosci Bioeng; 2012 Jun; 113(6):704-9. PubMed ID: 22365415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
    Köhrer C; Sullivan EL; RajBhandary UL
    Nucleic Acids Res; 2004; 32(21):6200-11. PubMed ID: 15576346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching tRNA(Gln) identity from glutamine to tryptophan.
    Rogers MJ; Adachi T; Inokuchi H; Söll D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3463-7. PubMed ID: 1565639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a systematic set of tRNA mutants by ligation of synthetic oligonucleotides into defined single-stranded gaps.
    Cline SW; Yarus M; Wier P
    DNA; 1986 Feb; 5(1):37-51. PubMed ID: 3514184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codon specificity of UGA suppressor tRNATrp from Escherichia coli.
    Buckingham RH; Kurland CG
    Proc Natl Acad Sci U S A; 1977 Dec; 74(12):5496-8. PubMed ID: 341160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression.
    Anderson JC; Schultz PG
    Biochemistry; 2003 Aug; 42(32):9598-608. PubMed ID: 12911301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts.
    Lee CP; RajBhandary UL
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.