These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 3529087)

  • 41. Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids.
    Pott M; Schmidt MJ; Summerer D
    ACS Chem Biol; 2014 Dec; 9(12):2815-22. PubMed ID: 25299570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of amber and ochre suppressors in Salmonella typhimurium.
    Winston F; Botstein D; Miller JH
    J Bacteriol; 1979 Jan; 137(1):433-9. PubMed ID: 368021
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nonsense suppression in archaea.
    Bhattacharya A; Köhrer C; Mandal D; RajBhandary UL
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6015-20. PubMed ID: 25918386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. tRNA anticodon replacement experiments show that ribosomal frameshifting can be caused by doublet decoding.
    Bruce AG; Atkins JF; Gesteland RF
    Proc Natl Acad Sci U S A; 1986 Jul; 83(14):5062-6. PubMed ID: 2425361
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Establishment of mammalian cell lines containing multiple nonsense mutations and functional suppressor tRNA genes.
    Hudziak RM; Laski FA; RajBhandary UL; Sharp PA; Capecchi MR
    Cell; 1982 Nov; 31(1):137-46. PubMed ID: 6760983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Escherichia coli thymidylate synthase: amino acid substitutions by suppression of amber nonsense mutations.
    Michaels ML; Kim CW; Matthews DA; Miller JH
    Proc Natl Acad Sci U S A; 1990 May; 87(10):3957-61. PubMed ID: 2187197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.
    Eggertsson G; Söll D
    Microbiol Rev; 1988 Sep; 52(3):354-74. PubMed ID: 3054467
    [No Abstract]   [Full Text] [Related]  

  • 48. Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site.
    Meinnel T; Mechulam Y; Le Corre D; Panvert M; Blanquet S; Fayat G
    Proc Natl Acad Sci U S A; 1991 Jan; 88(1):291-5. PubMed ID: 1986377
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutant 16S ribosomal RNA: a codon-specific translational suppressor.
    Murgola EJ; Hijazi KA; Göringer HU; Dahlberg AE
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4162-5. PubMed ID: 3288986
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Construction of a vector, pRSVcatamb38, for the rapid and sensitive assay of amber suppression in human and other mammalian cells.
    Burke JF; Mogg AE
    Nucleic Acids Res; 1985 Feb; 13(4):1317-26. PubMed ID: 2987821
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amber suppressors of Erwinia chrysanthemi.
    Schoonejans E; Faelen M; Desmet L; Toussaint A
    Ann Inst Pasteur Microbiol; 1987; 138(3):289-96. PubMed ID: 2956976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The inability of yeast transfer RNA to suppress an amber mutation in an E. coli system.
    Kiger JA; Brantner CJ
    Genetics; 1973 Jan; 73(1):23-8. PubMed ID: 4569181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An inducible mammalian amber suppressor: propagation of a poliovirus mutant.
    Sedivy JM; Capone JP; RajBhandary UL; Sharp PA
    Cell; 1987 Jul; 50(3):379-89. PubMed ID: 3038332
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12: construction and characterization of recombinant strains with suppressor-enhancing mutations.
    Oeschger MP; Wiprud GT
    Mol Gen Genet; 1980; 178(2):293-9. PubMed ID: 6771486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Total synthesis of a gene.
    Khorana HG
    Science; 1979 Feb; 203(4381):614-25. PubMed ID: 366749
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic studies of the lac repressor. IX. Generation of altered proteins by the suppression of nonsence mutations.
    Miller JH; Coulondre C; Hofer M; Schmeissner U; Sommer H; Schmitz A; Lu P
    J Mol Biol; 1979 Jun; 131(2):191-222. PubMed ID: 385890
    [No Abstract]   [Full Text] [Related]  

  • 57. Identification of transfer RNA suppressors in Escherichia coli. II. Duplicate genes for tRNA2Gln.
    Inokuchi H; Kodaira M; Yamao F; Ozeki H
    J Mol Biol; 1979 Aug; 132(4):663-77. PubMed ID: 160950
    [No Abstract]   [Full Text] [Related]  

  • 58. Glutamic acid codon suppressors derived from a unique species of glycine transfer ribonucleic acid.
    Murgola EJ; Bryant JE
    J Bacteriol; 1980 Apr; 142(1):131-7. PubMed ID: 6154684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Codon-dependent rearrangement of the tertiary structure of tRNAPhe from yeast.
    Schwarz U; Gassen HG
    FEBS Lett; 1977 Jun; 78(2):267-70. PubMed ID: 328302
    [No Abstract]   [Full Text] [Related]  

  • 60. A leucyl-transfer RNA specified by the amber suppressor gene Su6+.
    Gopinathan KP; Garen A
    J Mol Biol; 1970 Feb; 47(3):393-401. PubMed ID: 4907268
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.