BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 35291020)

  • 1. Pitfalls and Recommended Strategies and Metrics for Suppressing Motion Artifacts in Functional MRI.
    Raval V; Nguyen KP; Pinho M; Dewey RB; Trivedi M; Montillo AA
    Neuroinformatics; 2022 Oct; 20(4):879-896. PubMed ID: 35291020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics.
    Yan CG; Cheung B; Kelly C; Colcombe S; Craddock RC; Di Martino A; Li Q; Zuo XN; Castellanos FX; Milham MP
    Neuroimage; 2013 Aug; 76():183-201. PubMed ID: 23499792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of motion-related artifacts in resting state fMRI using aCompCor.
    Muschelli J; Nebel MB; Caffo BS; Barber AD; Pekar JJ; Mostofsky SH
    Neuroimage; 2014 Aug; 96():22-35. PubMed ID: 24657780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigating head motion artifact in functional connectivity MRI.
    Ciric R; Rosen AFG; Erus G; Cieslak M; Adebimpe A; Cook PA; Bassett DS; Davatzikos C; Wolf DH; Satterthwaite TD
    Nat Protoc; 2018 Dec; 13(12):2801-2826. PubMed ID: 30446748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding windows analysis can undo the effects of preprocessing when applied to fMRI data.
    Lindquist MA
    bioRxiv; 2024 Apr; ():. PubMed ID: 37873165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising.
    Nielsen AN; Greene DJ; Gratton C; Dosenbach NUF; Petersen SE; Schlaggar BL
    Cereb Cortex; 2019 Jun; 29(6):2455-2469. PubMed ID: 29850877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics.
    Luppi AI; Gellersen HM; Liu ZQ; Peattie ARD; Manktelow AE; Adapa R; Owen AM; Naci L; Menon DK; Dimitriadis SI; Stamatakis EA
    Nat Commun; 2024 Jun; 15(1):4745. PubMed ID: 38834553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for cleaning the BOLD fMRI signal.
    Caballero-Gaudes C; Reynolds RC
    Neuroimage; 2017 Jul; 154():128-149. PubMed ID: 27956209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex and magnitude-only preprocessing of 2D and 3D BOLD fMRI data at 7 T.
    Barry RL; Strother SC; Gore JC
    Magn Reson Med; 2012 Mar; 67(3):867-71. PubMed ID: 21748797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quality control procedures and metrics for resting-state functional MRI.
    Birn RM
    Front Neuroimaging; 2023; 2():1072927. PubMed ID: 37554646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous evaluation of denoising strategies in resting-state fMRI connectivity using fMRIPrep and Nilearn.
    Wang HT; Meisler SL; Sharmarke H; Clarke N; Gensollen N; Markiewicz CJ; Paugam F; Thirion B; Bellec P
    PLoS Comput Biol; 2024 Mar; 20(3):e1011942. PubMed ID: 38498530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation and comparison of GLM- and CVA-based fMRI processing pipelines with Java-based fMRI processing pipeline evaluation system.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroimage; 2008 Jul; 41(4):1242-52. PubMed ID: 18482849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilizing fMRI to Guide TMS Targets: the Reliability and Sensitivity of fMRI Metrics at 3 T and 1.5 T.
    Ge Q; Lock M; Yang X; Ding Y; Yue J; Zhao N; Hu YS; Zhang Y; Yao M; Zang YF
    Neuroinformatics; 2024 May; ():. PubMed ID: 38780699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network Representation of fMRI Data Using Visibility Graphs: The Impact of Motion and Test-Retest Reliability.
    Poudel GR; Sharma P; Lorenzetti V; Parsons N; Cerin E
    Neuroinformatics; 2024 Apr; 22(2):107-118. PubMed ID: 38332409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIRACY: An Optimized Pipeline for Functional Connectivity Analysis in the Rat Brain.
    Diao Y; Yin T; Gruetter R; Jelescu IO
    Front Neurosci; 2021; 15():602170. PubMed ID: 33841071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility of graph measures at the subject level using resting-state fMRI.
    Ran Q; Jamoulle T; Schaeverbeke J; Meersmans K; Vandenberghe R; Dupont P
    Brain Behav; 2020 Aug; 10(8):2336-2351. PubMed ID: 32614515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphical interface for automated management of motion artifact within fMRI acquisitions: INFOBAR.
    Anand M; Diekfuss JA; Slutsky-Ganesh AB; Bonnette S; Grooms DR; Myer GD
    SoftwareX; 2020; 12():. PubMed ID: 33447655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous Evaluation of Denoising Strategies in Resting-State fMRI Connectivity Using fMRIPrep and Nilearn.
    Wang HT; Meisler SL; Sharmarke H; Clarke N; Gensollen N; Markiewicz CJ; Paugam F; Thirion B; Bellec P
    bioRxiv; 2023 Jul; ():. PubMed ID: 37131781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Omission of temporal nuisance regressors from dual regression can improve accuracy of fMRI functional connectivity maps.
    Kelly RE; Hoptman MJ; Alexopoulos GS; Gunning FM; McKeown MJ
    Hum Brain Mapp; 2019 Oct; 40(14):4005-4025. PubMed ID: 31187917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and Mitigation of a Simultaneous Multi-Slice fMRI Artifact: Multiband Artifact Regression in Simultaneous Slices.
    Tubiolo PN; Williams JC; Van Snellenberg JX
    bioRxiv; 2024 Apr; ():. PubMed ID: 38234755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.