These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35291064)

  • 1. Stability of rotatory solitary states in Kuramoto networks with inertia.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh IV
    Phys Rev E; 2022 Feb; 105(2-1):024203. PubMed ID: 35291064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chimeras and solitary states in 3D oscillator networks with inertia.
    Maistrenko V; Sudakov O; Osiv O
    Chaos; 2020 Jun; 30(6):063113. PubMed ID: 32611131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When three is a crowd: Chaos from clusters of Kuramoto oscillators with inertia.
    Brister BN; Belykh VN; Belykh IV
    Phys Rev E; 2020 Jun; 101(6-1):062206. PubMed ID: 32688588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breathing and switching cyclops states in Kuramoto networks with higher-mode coupling.
    Bolotov MI; Munyayev VO; Smirnov LA; Osipov GV; Belykh I
    Phys Rev E; 2024 May; 109(5-1):054202. PubMed ID: 38907462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclops States in Repulsive Kuramoto Networks: The Role of Higher-Order Coupling.
    Munyayev VO; Bolotov MI; Smirnov LA; Osipov GV; Belykh I
    Phys Rev Lett; 2023 Mar; 130(10):107201. PubMed ID: 36962033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solitary states for coupled oscillators with inertia.
    Jaros P; Brezetsky S; Levchenko R; Dudkowski D; Kapitaniak T; Maistrenko Y
    Chaos; 2018 Jan; 28(1):011103. PubMed ID: 29390619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistability of patterns of synchrony in Kuramoto oscillators with inertia.
    Belykh IV; Brister BN; Belykh VN
    Chaos; 2016 Sep; 26(9):094822. PubMed ID: 27781476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct collective states due to trade-off between attractive and repulsive couplings.
    Sathiyadevi K; Chandrasekar VK; Senthilkumar DV; Lakshmanan M
    Phys Rev E; 2018 Mar; 97(3-1):032207. PubMed ID: 29776099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions.
    Maistrenko Y; Penkovsky B; Rosenblum M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):060901. PubMed ID: 25019710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial synchronization in the second-order Kuramoto model: An auxiliary system method.
    Barabash NV; Belykh VN; Osipov GV; Belykh IV
    Chaos; 2021 Nov; 31(11):113113. PubMed ID: 34881584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimera Patterns of Synchrony in a Frustrated Array of Hebb Synapses.
    Botha AE; Ansariara M; Emadi S; Kolahchi MR
    Front Comput Neurosci; 2022; 16():888019. PubMed ID: 35814347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteretic transitions in the Kuramoto model with inertia.
    Olmi S; Navas A; Boccaletti S; Torcini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042905. PubMed ID: 25375565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solitary states and solitary state chimera in neural networks.
    Rybalova E; Anishchenko VS; Strelkova GI; Zakharova A
    Chaos; 2019 Jul; 29(7):071106. PubMed ID: 31370403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized splay states in phase oscillator networks.
    Berner R; Yanchuk S; Maistrenko Y; Schöll E
    Chaos; 2021 Jul; 31(7):073128. PubMed ID: 34340340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heteroclinic switching between chimeras in a ring of six oscillator populations.
    Lee S; Krischer K
    Chaos; 2023 Jun; 33(6):. PubMed ID: 37276574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weak chimeras in minimal networks of coupled phase oscillators.
    Ashwin P; Burylko O
    Chaos; 2015 Jan; 25(1):013106. PubMed ID: 25637917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.
    Mishra A; Hens C; Bose M; Roy PK; Dana SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062920. PubMed ID: 26764787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multistable chimera states in a smallest population of three coupled oscillators.
    Ragavan A; Manoranjani M; Senthilkumar DV; Chandrasekar VK
    Phys Rev E; 2023 Apr; 107(4-1):044209. PubMed ID: 37198793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attracting Poisson chimeras in two-population networks.
    Lee S; Krischer K
    Chaos; 2021 Nov; 31(11):113101. PubMed ID: 34881613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.