These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35291071)

  • 1. Role of cotranslational folding for β-sheet-enriched proteins: A perspective from molecular dynamics simulations.
    Tao P; Xiao Y
    Phys Rev E; 2022 Feb; 105(2-1):024402. PubMed ID: 35291071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational evidence that fast translation speed can increase the probability of cotranslational protein folding.
    Wang E; Wang J; Chen C; Xiao Y
    Sci Rep; 2015 Oct; 5():15316. PubMed ID: 26486723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway regulation mechanism revealed by cotranslational folding of villin headpiece subdomain HP35.
    Tao P; Wang E; Xiao Y
    Phys Rev E; 2020 May; 101(5-1):052403. PubMed ID: 32575289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cotranslational Folding of a Pentarepeat β-Helix Protein.
    Notari L; Martínez-Carranza M; Farías-Rico JA; Stenmark P; von Heijne G
    J Mol Biol; 2018 Dec; 430(24):5196-5206. PubMed ID: 30539762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding.
    Kudva R; Tian P; Pardo-Avila F; Carroni M; Best RB; Bernstein HD; von Heijne G
    Elife; 2018 Nov; 7():. PubMed ID: 30475203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome Tunnel Environment Drives the Formation of α-Helix during Cotranslational Folding.
    Yasuda T; Morita R; Shigeta Y; Harada R
    J Chem Inf Model; 2024 Aug; 64(16):6610-6622. PubMed ID: 39150098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotranslational Protein Folding inside the Ribosome Exit Tunnel.
    Nilsson OB; Hedman R; Marino J; Wickles S; Bischoff L; Johansson M; Müller-Lucks A; Trovato F; Puglisi JD; O'Brien EP; Beckmann R; von Heijne G
    Cell Rep; 2015 Sep; 12(10):1533-40. PubMed ID: 26321634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates.
    O'Brien EP; Vendruscolo M; Dobson CM
    Nat Commun; 2014; 5():2988. PubMed ID: 24394622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice simulations of cotranslational folding of single domain proteins.
    Wang P; Klimov DK
    Proteins; 2008 Feb; 70(3):925-37. PubMed ID: 17803235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins.
    Trovato F; O'Brien EP
    Biophys J; 2017 May; 112(9):1807-1819. PubMed ID: 28494952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How the ribosome shapes cotranslational protein folding.
    Samatova E; Komar AA; Rodnina MV
    Curr Opin Struct Biol; 2024 Feb; 84():102740. PubMed ID: 38071940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cotranslational folding--omnia mea mecum porto?
    Kramer G; Ramachandiran V; Hardesty B
    Int J Biochem Cell Biol; 2001 Jun; 33(6):541-53. PubMed ID: 11378437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradual compaction of the nascent peptide during cotranslational folding on the ribosome.
    Liutkute M; Maiti M; Samatova E; Enderlein J; Rodnina MV
    Elife; 2020 Oct; 9():. PubMed ID: 33112737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
    Evans MS; Sander IM; Clark PL
    J Mol Biol; 2008 Nov; 383(3):683-92. PubMed ID: 18674543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cotranslational structure acquisition of nascent polypeptides monitored by NMR spectroscopy.
    Eichmann C; Preissler S; Riek R; Deuerling E
    Proc Natl Acad Sci U S A; 2010 May; 107(20):9111-6. PubMed ID: 20439768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation study of the role of the ribosomal exit tunnel on protein folding.
    Chen C; Wang E; Liu P; Xiao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022701. PubMed ID: 23496542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation and folding of single proteins in real time.
    Wruck F; Katranidis A; Nierhaus KH; Büldt G; Hegner M
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4399-E4407. PubMed ID: 28507157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small single-domain protein folds through the same pathway on and off the ribosome.
    Guinn EJ; Tian P; Shin M; Best RB; Marqusee S
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12206-12211. PubMed ID: 30409803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays.
    Kemp G; Kudva R; de la Rosa A; von Heijne G
    J Mol Biol; 2019 Mar; 431(6):1308-1314. PubMed ID: 30738895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding.
    Fulle S; Gohlke H
    J Mol Biol; 2009 Mar; 387(2):502-17. PubMed ID: 19356596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.