These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 35291093)
1. Maximum efficiency of low-dissipation heat pumps at given heating load. Ye Z; Holubec V Phys Rev E; 2022 Feb; 105(2-1):024139. PubMed ID: 35291093 [TBL] [Abstract][Full Text] [Related]
2. Efficiency at maximum power output of linear irreversible Carnot-like heat engines. Wang Y; Tu ZC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011127. PubMed ID: 22400532 [TBL] [Abstract][Full Text] [Related]
3. Optimal Heat Exchanger Area Distribution and Low-Temperature Heat Sink Temperature for Power Optimization of an Endoreversible Space Carnot Cycle. Wang T; Ge Y; Chen L; Feng H; Yu J Entropy (Basel); 2021 Sep; 23(10):. PubMed ID: 34682008 [TBL] [Abstract][Full Text] [Related]
4. Efficiency at and near maximum power of low-dissipation heat engines. Holubec V; Ryabov A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665 [TBL] [Abstract][Full Text] [Related]
5. Ecological efficiency of finite-time thermodynamics: A molecular dynamics study. Rojas-Gamboa DA; Rodríguez JI; Gonzalez-Ayala J; Angulo-Brown F Phys Rev E; 2018 Aug; 98(2-1):022130. PubMed ID: 30253568 [TBL] [Abstract][Full Text] [Related]
6. Finite-power performance of quantum heat engines in linear response. Liu Q; He J; Ma Y; Wang J Phys Rev E; 2019 Jul; 100(1-1):012105. PubMed ID: 31499858 [TBL] [Abstract][Full Text] [Related]
7. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency. Gerstenmaier YC Phys Rev E; 2021 Mar; 103(3-1):032141. PubMed ID: 33862798 [TBL] [Abstract][Full Text] [Related]
8. Maximum efficiency of low-dissipation refrigerators at arbitrary cooling power. Holubec V; Ye Z Phys Rev E; 2020 May; 101(5-1):052124. PubMed ID: 32575339 [TBL] [Abstract][Full Text] [Related]
9. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines. Haseli Y Heliyon; 2016 May; 2(5):e00113. PubMed ID: 27441284 [TBL] [Abstract][Full Text] [Related]
10. Applicability of the low-dissipation model: Carnot-like heat engines under Newton's law of cooling. Zhang Y; Huang Y Phys Rev E; 2020 Jul; 102(1-1):012151. PubMed ID: 32794970 [TBL] [Abstract][Full Text] [Related]
11. Maximum power and the corresponding efficiency for a Carnot-like thermoelectric cycle based on fluctuation theorem. Hua Y; Guo ZY Phys Rev E; 2024 Feb; 109(2-1):024130. PubMed ID: 38491639 [TBL] [Abstract][Full Text] [Related]
12. Comparative Assessment of Various Low-Dissipation Combined Models for Three-Terminal Heat Pump Systems. Li Z; Cao H; Yang H; Guo J Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922628 [TBL] [Abstract][Full Text] [Related]
13. Maximum efficiency of absorption refrigerators at arbitrary cooling power. Ye Z; Holubec V Phys Rev E; 2021 May; 103(5-1):052125. PubMed ID: 34134287 [TBL] [Abstract][Full Text] [Related]
14. Unified trade-off optimization for general heat devices with nonisothermal processes. Long R; Liu W Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042127. PubMed ID: 25974458 [TBL] [Abstract][Full Text] [Related]
15. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
16. Efficiency and its bounds of minimally nonlinear irreversible heat engines at arbitrary power. Long R; Liu W Phys Rev E; 2016 Nov; 94(5-1):052114. PubMed ID: 27967103 [TBL] [Abstract][Full Text] [Related]
17. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit. Meng Z; Chen L; Wu F Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231 [TBL] [Abstract][Full Text] [Related]
19. Dynamic robustness of endoreversible Carnot refrigerator working in the maximum performance per cycle time. Lü K; Nie W; He J Sci Rep; 2018 Aug; 8(1):12638. PubMed ID: 30139973 [TBL] [Abstract][Full Text] [Related]