These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35291093)

  • 21. Effect of Finite-Size Heat Source's Heat Capacity on the Efficiency of Heat Engine.
    Ma YH
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286771
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime.
    Iyyappan I; Ponmurugan M
    Phys Rev E; 2018 Jan; 97(1-1):012141. PubMed ID: 29448419
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Universal efficiency bounds of weak-dissipative thermodynamic cycles at the maximum power output.
    Guo J; Wang J; Wang Y; Chen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012133. PubMed ID: 23410309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency.
    Zhao XH; Gong ZN; Tu ZC
    Phys Rev E; 2022 Dec; 106(6-1):064117. PubMed ID: 36671114
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficiency at maximum power of low-dissipation Carnot engines.
    Esposito M; Kawai R; Lindenberg K; Van den Broeck C
    Phys Rev Lett; 2010 Oct; 105(15):150603. PubMed ID: 21230882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation.
    Hu Y; Wu F; Ma Y; He J; Wang J; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062115. PubMed ID: 24483394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-dissipation heat devices: unified trade-off optimization and bounds.
    de Tomas C; Roco JM; Hernández AC; Wang Y; Tu ZC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012105. PubMed ID: 23410281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energetics of a simple microscopic heat engine.
    Asfaw M; Bekele M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056109. PubMed ID: 16383690
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Success versus failure: Efficient heat devices in thermodynamics.
    González-Ayala J; Calvo Hernández A; White JA; Medina A; Roco JMM; Velasco S
    Phys Rev E; 2022 Jan; 105(1-1):014115. PubMed ID: 35193266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diverging, but negligible power at Carnot efficiency: Theory and experiment.
    Holubec V; Ryabov A
    Phys Rev E; 2017 Dec; 96(6-1):062107. PubMed ID: 29347419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal low symmetric dissipation Carnot engines and refrigerators.
    de Tomás C; Hernández AC; Roco JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):010104. PubMed ID: 22400500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization and Stability of Heat Engines: The Role of Entropy Evolution.
    Gonzalez-Ayala J; Santillán M; Santos MJ; Calvo Hernández A; Mateos Roco JM
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heat engines at optimal power: Low-dissipation versus endoreversible model.
    Johal RS
    Phys Rev E; 2017 Jul; 96(1-1):012151. PubMed ID: 29347099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficiency at Maximum Power of a Carnot Quantum Information Engine.
    Fadler P; Friedenberger A; Lutz E
    Phys Rev Lett; 2023 Jun; 130(24):240401. PubMed ID: 37390443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compatibility of Carnot efficiency with finite power in an underdamped Brownian Carnot cycle in small temperature-difference regime.
    Miura K; Izumida Y; Okuda K
    Phys Rev E; 2021 Apr; 103(4-1):042125. PubMed ID: 34006002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L; Meng Z; Ge Y; Wu F
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33925622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Entropy generation and unified optimization of Carnot-like and low-dissipation refrigerators.
    Gonzalez-Ayala J; Medina A; Roco JMM; Hernández AC
    Phys Rev E; 2018 Feb; 97(2-1):022139. PubMed ID: 29548120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal performance of endoreversible quantum refrigerators.
    Correa LA; Palao JP; Adesso G; Alonso D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062124. PubMed ID: 25615061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal operating protocol to achieve efficiency at maximum power of heat engines.
    Ma YH; Xu D; Dong H; Sun CP
    Phys Rev E; 2018 Aug; 98(2-1):022133. PubMed ID: 30253629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.