These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Thermodynamics and efficiency of sequentially collisional Brownian particles: The role of drivings. Filho FS; Akasaki BAN; Noa CEF; Cleuren B; Fiore CE Phys Rev E; 2022 Oct; 106(4-1):044134. PubMed ID: 36397557 [TBL] [Abstract][Full Text] [Related]
4. Entropy production and heat transport in harmonic chains under time-dependent periodic drivings. Akasaki BAN; de Oliveira MJ; Fiore CE Phys Rev E; 2020 Jan; 101(1-1):012132. PubMed ID: 32069596 [TBL] [Abstract][Full Text] [Related]
5. Modeling and Performance Optimization of an Irreversible Two-Stage Combined Thermal Brownian Heat Engine. Qi C; Ding Z; Chen L; Ge Y; Feng H Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33807398 [TBL] [Abstract][Full Text] [Related]
6. General linear thermodynamics for periodically driven systems with multiple reservoirs. Proesmans K; Fiore CE Phys Rev E; 2019 Aug; 100(2-1):022141. PubMed ID: 31574599 [TBL] [Abstract][Full Text] [Related]
7. Stochastic thermodynamics of periodically driven systems: Fluctuation theorem for currents and unification of two classes. Ray S; Barato AC Phys Rev E; 2017 Nov; 96(5-1):052120. PubMed ID: 29347722 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical Onsager symmetries in adiabatically driven linear irreversible heat engines. Izumida Y Phys Rev E; 2021 May; 103(5):L050101. PubMed ID: 34134349 [TBL] [Abstract][Full Text] [Related]
9. Two coupled, driven Ising spin systems working as an engine. Basu D; Nandi J; Jayannavar AM; Marathe R Phys Rev E; 2017 May; 95(5-1):052123. PubMed ID: 28618631 [TBL] [Abstract][Full Text] [Related]
10. Controlling thermodynamics of a quantum heat engine with modulated amplitude drivings. Giri SK; Goswami HP Phys Rev E; 2022 Aug; 106(2-1):024131. PubMed ID: 36109996 [TBL] [Abstract][Full Text] [Related]
11. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Park JM; Chun HM; Noh JD Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096 [TBL] [Abstract][Full Text] [Related]
13. Universality of maximum-work efficiency of a cyclic heat engine based on a finite system of ultracold atoms. Ye Z; Hu Y; He J; Wang J Sci Rep; 2017 Jul; 7(1):6289. PubMed ID: 28740216 [TBL] [Abstract][Full Text] [Related]
14. Quasilinear irreversible thermodynamics of a low-temperature-differential kinematic Stirling heat engine. Izumida Y Phys Rev E; 2020 Jul; 102(1-1):012142. PubMed ID: 32795077 [TBL] [Abstract][Full Text] [Related]
15. Exactly solvable two-terminal heat engine with asymmetric Onsager coefficients: Origin of the power-efficiency bound. Lee JS; Park JM; Chun HM; Um J; Park H Phys Rev E; 2020 May; 101(5-1):052132. PubMed ID: 32575278 [TBL] [Abstract][Full Text] [Related]
16. Optimization of an active heat engine. Gronchi G; Puglisi A Phys Rev E; 2021 May; 103(5-1):052134. PubMed ID: 34134299 [TBL] [Abstract][Full Text] [Related]
18. Realization of a Brownian engine to study transport phenomena: a semiclassical approach. Ghosh P; Shit A; Chattopadhyay S; Chaudhuri JR Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061112. PubMed ID: 20866383 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamics of a minimal interacting heat engine: Comparison between engine designs. Hawthorne F; Cleuren B; Fiore CE Phys Rev E; 2024 Jun; 109(6-1):064120. PubMed ID: 39020975 [TBL] [Abstract][Full Text] [Related]
20. Single-particle stochastic heat engine. Rana S; Pal PS; Saha A; Jayannavar AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042146. PubMed ID: 25375477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]