These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35291127)

  • 1. Droplet formation of biological non-Newtonian fluid in T-junction generators. I. Experimental investigation.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025105. PubMed ID: 35291127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet formation of biological non-Newtonian fluid in T-junction generators. II. Model for final droplet volume prediction.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025106. PubMed ID: 35291163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Newtonian Droplet Generation in a Cross-Junction Microfluidic Channel.
    Fatehifar M; Revell A; Jabbari M
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of alternating current electric field-assisted non-Newtonian droplet formation with geometry confinement.
    Yin S; Huang Y; Li H; Wong TN
    Electrophoresis; 2022 Nov; 43(21-22):2120-2129. PubMed ID: 35524712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects.
    Glawdel T; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026308. PubMed ID: 23005855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mixing efficiency and reduced droplet size with novel droplet generators.
    Kheirkhah Barzoki A
    Sci Rep; 2024 Feb; 14(1):4711. PubMed ID: 38409482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable microfluidic droplet on-demand generator for non-steady operation of droplet-based assays.
    Totlani K; Hurkmans JW; van Gulik WM; Kreutzer MT; van Steijn V
    Lab Chip; 2020 Apr; 20(8):1398-1409. PubMed ID: 32255441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and Dynamics of Janus Droplets in Shear-Thinning Fluid Flow in a Double Y-Type Microchannel.
    Bai F; Zhang H; Li X; Li F; Joo SW
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches.
    Khater A; Abdelrehim O; Mohammadi M; Azarmanesh M; Janmaleki M; Salahandish R; Mohamad A; Sanati-Nezhad A
    Lab Chip; 2020 Jun; 20(12):2175-2187. PubMed ID: 32420570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device.
    Xue CD; Chen XD; Li YJ; Hu GQ; Cao T; Qin KR
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Droplet impact of blood and blood simulants on a solid surface: Effect of the deformability of red blood cells and the elasticity of plasma.
    Yokoyama Y; Tanaka A; Tagawa Y
    Forensic Sci Int; 2022 Feb; 331():111138. PubMed ID: 34906891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.