These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35291127)

  • 21. Hydrodynamics of electro-capillarity propelled non-Newtonian droplets through micro-confinements.
    Dhar P; Paul A
    Eur Phys J E Soft Matter; 2022 Apr; 45(4):38. PubMed ID: 35467174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. I. Experimental observations.
    Qin N; Wen JZ; Ren CL
    Phys Rev E; 2017 Apr; 95(4-1):043110. PubMed ID: 28505748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerating Effects of Flow Behavior Index
    Zhang J; Han Y; Wang Z
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscosity Measurements Using Microfluidic Droplet Length.
    Li Y; Ward KR; Burns MA
    Anal Chem; 2017 Apr; 89(7):3996-4006. PubMed ID: 28240541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The fluid property dependency on micro-fluidic characteristics in the deposition process for microfabrication.
    Chau SW; Hsu KL; Chen SC; Liou TM; Shih KC
    Biosens Bioelectron; 2004 Jul; 20(1):133-8. PubMed ID: 15142586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion and deformation of a droplet in a microfluidic cross-junction.
    Boruah N; Dimitrakopoulos P
    J Colloid Interface Sci; 2015 Sep; 453():216-225. PubMed ID: 25985426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental Study of Bubble Formation from a Micro-Tube in Non-Newtonian Fluid.
    Kontaxi G; Stergiou YG; Mouza AA
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33440872
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Viscoelastic Particle Encapsulation Using a Hyaluronic Acid Solution in a T-Junction Microfluidic Device.
    Jeyasountharan A; Del Giudice F
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liquid-Liquid Flows with Non-Newtonian Dispersed Phase in a T-Junction Microchannel.
    Yagodnitsyna A; Kovalev A; Bilsky A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of flow and droplets with an ultra-long-range linear concentration gradient.
    Dai B; Long Y; Wu J; Huang S; Zhao Y; Zheng L; Tao C; Guo S; Lin F; Fu Y; Zhang D; Zhuang S
    Lab Chip; 2021 Nov; 21(22):4390-4400. PubMed ID: 34704106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of Droplet Production Speed by Measuring the Droplet Spacing Fluctuations in a Flow-Focusing Microdroplet Generator.
    Zeng W; Xiang D; Fu H
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31775320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Newtonian droplet-based microfluidics logic gates.
    Asghari E; Moosavi A; Hannani SK
    Sci Rep; 2020 Jun; 10(1):9293. PubMed ID: 32518389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational Evaluation of Suspended Microcantilever and Microfluidic Channel.
    Gavalas I; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1171-1174. PubMed ID: 31946102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of Droplets of Shear-Thinning Non-Newtonian Fluids in Asymmetrical Parallelized Microchannels.
    Dong Y; Xiang X; Wang Z; Zhu C; Ma Y; Fu T
    Langmuir; 2023 Feb; 39(6):2218-2232. PubMed ID: 36724386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microconfined shear deformation of a droplet in an equiviscous non-newtonian immiscible fluid: experiments and modeling.
    Minale M; Caserta S; Guido S
    Langmuir; 2010 Jan; 26(1):126-32. PubMed ID: 20038166
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.