These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35291163)

  • 1. Droplet formation of biological non-Newtonian fluid in T-junction generators. II. Model for final droplet volume prediction.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025106. PubMed ID: 35291163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Droplet formation of biological non-Newtonian fluid in T-junction generators. I. Experimental investigation.
    Marcali M; Chen X; Aucoin MG; Ren CL
    Phys Rev E; 2022 Feb; 105(2-2):025105. PubMed ID: 35291127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Newtonian Droplet Generation in a Cross-Junction Microfluidic Channel.
    Fatehifar M; Revell A; Jabbari M
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34207574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation and Dynamics of Janus Droplets in Shear-Thinning Fluid Flow in a Double Y-Type Microchannel.
    Bai F; Zhang H; Li X; Li F; Joo SW
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33546484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Liquid Flows with Non-Newtonian Dispersed Phase in a T-Junction Microchannel.
    Yagodnitsyna A; Kovalev A; Bilsky A
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Bouncing Behaviors of a Non-Newtonian Fluid Droplet Impacting on a Hydrophobic Surface.
    Liu H; Zheng N; Chen J; Yang D; Wang J
    Langmuir; 2023 Mar; 39(11):3979-3993. PubMed ID: 36897569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Effects of Flow Behavior Index
    Zhang J; Han Y; Wang Z
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Droplets of Shear-Thinning Non-Newtonian Fluids in Asymmetrical Parallelized Microchannels.
    Dong Y; Xiang X; Wang Z; Zhu C; Ma Y; Fu T
    Langmuir; 2023 Feb; 39(6):2218-2232. PubMed ID: 36724386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size.
    Sartipzadeh O; Naghib SM; Seyfoori A; Rahmanian M; Fateminia FS
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110606. PubMed ID: 32228988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.
    Cheung YN; Qiu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of alternating current electric field-assisted non-Newtonian droplet formation with geometry confinement.
    Yin S; Huang Y; Li H; Wong TN
    Electrophoresis; 2022 Nov; 43(21-22):2120-2129. PubMed ID: 35524712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Block-and-break generation of microdroplets with fixed volume.
    van Steijn V; Korczyk PM; Derzsi L; Abate AR; Weitz DA; Garstecki P
    Biomicrofluidics; 2013; 7(2):24108. PubMed ID: 24404013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Oil Viscosity on Droplet Generation Rate and Droplet Size in a T-Junction Microfluidic Droplet Generator.
    Yao J; Lin F; Kim HS; Park J
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31771159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscosity Measurements Using Microfluidic Droplet Length.
    Li Y; Ward KR; Burns MA
    Anal Chem; 2017 Apr; 89(7):3996-4006. PubMed ID: 28240541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.