These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35291163)

  • 21. Modeling of Droplet Generation in a Microfluidic Flow-Focusing Junction for Droplet Size Control.
    Ibrahim AM; Padovani JI; Howe RT; Anis YH
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet impact of blood and blood simulants on a solid surface: Effect of the deformability of red blood cells and the elasticity of plasma.
    Yokoyama Y; Tanaka A; Tagawa Y
    Forensic Sci Int; 2022 Feb; 331():111138. PubMed ID: 34906891
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet formation in microfluidic T-junction generators operating in the transitional regime. III. Dynamic surfactant effects.
    Glawdel T; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026308. PubMed ID: 23005855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly pressurized partially miscible liquid-liquid flow in a micro-T-junction. I. Experimental observations.
    Qin N; Wen JZ; Ren CL
    Phys Rev E; 2017 Apr; 95(4-1):043110. PubMed ID: 28505748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of wall velocity slip on droplet generation in microfluidic T-junctions.
    Li X; He L; Lv S; Xu C; Qian P; Xie F; Liu M
    RSC Adv; 2019 Jul; 9(40):23229-23240. PubMed ID: 35514511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Processes Leading to "Necking" in Extensional Flow of Polymer Solutions: Using Microfluidics and Single DNA Imaging.
    Sachdev S; Muralidharan A; Boukany PE
    Macromolecules; 2016 Dec; 49(24):9578-9585. PubMed ID: 28216791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamics and controllability of droplet fusion under gas-liquid-liquid three-phase flow in a microfluidic reactor.
    Hao Y; Jin N; Wang Q; Zhou Y; Zhao Y; Zhang X; Lü H
    RSC Adv; 2020 Apr; 10(24):14322-14330. PubMed ID: 35498473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-Newtonian flow effects on the coalescence and mixing of initially stationary droplets of shear-thinning fluids.
    Sun K; Wang T; Zhang P; Law CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023009. PubMed ID: 25768599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of surfactant adsorption on the formation of compound droplets in microfluidic devices.
    Liu M; Zheng Y; Liu Y; Zhang Z; Wang Y; Chen Q; Li J; Li J; Huang Y; Yin Q
    RSC Adv; 2019 Dec; 9(71):41943-41954. PubMed ID: 35541619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A lattice Boltzmann study of the effects of viscoelasticity on droplet formation in microfluidic cross-junctions.
    Gupta A; Sbragaglia M
    Eur Phys J E Soft Matter; 2016 Jan; 39(1):2. PubMed ID: 26794502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows.
    Gupta A; Sbragaglia M; Belardinelli D; Sugiyama K
    Phys Rev E; 2016 Dec; 94(6-1):063302. PubMed ID: 28085339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasonic atomization: effect of liquid phase properties.
    Avvaru B; Patil MN; Gogate PR; Pandit AB
    Ultrasonics; 2006 Feb; 44(2):146-58. PubMed ID: 16321416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO
    Nasser GA; Fath El-Bab AMR; Abdel-Mawgood AL; Mohamed H; Saleh AM
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31600884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental validation of plugging during drop formation in a T-junction.
    Abate AR; Mary P; van Steijn V; Weitz DA
    Lab Chip; 2012 Apr; 12(8):1516-21. PubMed ID: 22402628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High aspect ratio induced spontaneous generation of monodisperse picolitre droplets for digital PCR.
    Xu X; Yuan H; Song R; Yu M; Chung HY; Hou Y; Shang Y; Zhou H; Yao S
    Biomicrofluidics; 2018 Jan; 12(1):014103. PubMed ID: 29333205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluid mixing in droplet-based microfluidics with T junction and convergent-divergent sinusoidal microchannels.
    Yang L; Li S; Liu J; Cheng J
    Electrophoresis; 2018 Feb; 39(3):512-520. PubMed ID: 29168894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.