These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35291783)

  • 1. Structure of nematic tactoids of hard rods.
    Kuhnhold A; van der Schoot P
    J Chem Phys; 2022 Mar; 156(10):104501. PubMed ID: 35291783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osmotic compression of droplets of hard rods: a computer simulation study.
    Trukhina Y; Jungblut S; van der Schoot P; Schilling T
    J Chem Phys; 2009 Apr; 130(16):164513. PubMed ID: 19405600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental realization of crossover in shape and director field of nematic tactoids.
    Jamali V; Behabtu N; Senyuk B; Lee JA; Smalyukh II; van der Schoot P; Pasquali M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042507. PubMed ID: 25974516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of elongation of nematic tactoids in an electric field.
    Safdari M; Zandi R; van der Schoot P
    Phys Rev E; 2024 May; 109(5-1):054706. PubMed ID: 38907476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic pathways for the isotropic-nematic phase transition in a system of colloidal hard rods: a simulation study.
    Cuetos A; Dijkstra M
    Phys Rev Lett; 2007 Mar; 98(9):095701. PubMed ID: 17359170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape and director-field transformation of tactoids.
    Prinsen P; van der Schoot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021701. PubMed ID: 14524987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous director-field transformation of nematic tactoids.
    Prinsen P; van der Schoot P
    Eur Phys J E Soft Matter; 2004 Jan; 13(1):35-41. PubMed ID: 15024614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of electric fields on the director field and shape of nematic tactoids.
    Safdari M; Zandi R; van der Schoot P
    Phys Rev E; 2021 Jun; 103(6-1):062703. PubMed ID: 34271629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tactoids of plate-like particles: size, shape, and director field.
    Verhoeff AA; Bakelaar IA; Otten RH; van der Schoot P; Lekkerkerker HN
    Langmuir; 2011 Jan; 27(1):116-25. PubMed ID: 21128605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Liquid Crystals Confined to Synthetic Tactoids.
    Gârlea IC; Dammone O; Alvarado J; Notenboom V; Jia Y; Koenderink GH; Aarts DGAL; Lettinga MP; Mulder BM
    Sci Rep; 2019 Dec; 9(1):20391. PubMed ID: 31892707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis of defects and tactoids during isotropic-nematic phase transition in self-assembled lyotropic chromonic liquid crystals.
    Kim YK; Shiyanovskii SV; Lavrentovich OD
    J Phys Condens Matter; 2013 Oct; 25(40):404202. PubMed ID: 24025849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Condensation and dissolution of nematic droplets in dispersions of colloidal rods with thermo-sensitive depletants.
    Modlińska A; Alsayed AM; Gibaud T
    Sci Rep; 2015 Dec; 5():18432. PubMed ID: 26656207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow-induced order-order transitions in amyloid fibril liquid crystalline tactoids.
    Almohammadi H; Bagnani M; Mezzenga R
    Nat Commun; 2020 Oct; 11(1):5416. PubMed ID: 33110064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nematic ordering of hard rods under strong confinement in a dense array of nanoposts.
    Kil KH; Yethiraj A; Kim JS
    Phys Rev E; 2020 Mar; 101(3-1):032705. PubMed ID: 32289982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid Fibrils Length Controls Shape and Structure of Nematic and Cholesteric Tactoids.
    Bagnani M; Nyström G; De Michele C; Mezzenga R
    ACS Nano; 2019 Jan; 13(1):591-600. PubMed ID: 30543398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of two-dimensional hard rectangles: confinement effects.
    Triplett DA; Fichthorn KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011707. PubMed ID: 18351866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of bending flexibility on the phase behavior and dynamics of rods.
    Naderi S; van der Schoot P
    J Chem Phys; 2014 Sep; 141(12):124901. PubMed ID: 25273468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unusual geometric percolation of hard nanorods in the uniaxial nematic liquid crystalline phase.
    Finner SP; Atashpendar A; Schilling T; van der Schoot P
    Phys Rev E; 2019 Dec; 100(6-1):062129. PubMed ID: 31962472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nematic droplets in aqueous dispersions of carbon nanotubes.
    Puech N; Grelet E; Poulin P; Blanc C; van der Schoot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):020702. PubMed ID: 20866768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of parallel charged platelets as an approach to tactoid formation in clay.
    Thuresson A; Ullner M; Åkesson T; Labbez C; Jönsson B
    Langmuir; 2013 Jul; 29(29):9216-23. PubMed ID: 23834598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.