These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35291787)

  • 21. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Group contribution methodology based on the statistical associating fluid theory for heteronuclear molecules formed from Mie segments.
    Papaioannou V; Lafitte T; Avendaño C; Adjiman CS; Jackson G; Müller EA; Galindo A
    J Chem Phys; 2014 Feb; 140(5):054107. PubMed ID: 24511922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global and critical test of the perturbation density-functional theory based on extensive simulation of Lennard-Jones fluid near an interface and in confined systems.
    Zhou S; Jamnik A
    J Chem Phys; 2005 Sep; 123(12):124708. PubMed ID: 16392512
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous cavitation in a Lennard-Jones liquid: Molecular dynamics simulation and the van der Waals-Cahn-Hilliard gradient theory.
    Baidakov VG
    J Chem Phys; 2016 Feb; 144(7):074502. PubMed ID: 26896990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hard sphere perturbation theory for fluids with soft-repulsive-core potentials.
    Ben-Amotz D; Stell G
    J Chem Phys; 2004 Mar; 120(10):4844-51. PubMed ID: 15267344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic and structural properties of repulsive hard-core Yukawa fluid: integral equation theory, perturbation theory and Monte Carlo simulations.
    Cochran TW; Chiew YC
    J Chem Phys; 2004 Jul; 121(3):1480-6. PubMed ID: 15260693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple extrapolation of thermodynamic perturbation theory to infinite order.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2015 Sep; 143(11):114107. PubMed ID: 26395687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces.
    Ghobadi AF; Elliott JR
    J Chem Phys; 2014 Jul; 141(2):024708. PubMed ID: 25028039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of phase behavior of nanoconfined Lennard-Jones fluids with density functional theory based on the first-order mean spherical approximation.
    Mi J; Tang Y; Zhong C; Li YG
    J Chem Phys; 2006 Apr; 124(14):144709. PubMed ID: 16626233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions.
    Vrabec J; Gross J
    J Phys Chem B; 2008 Jan; 112(1):51-60. PubMed ID: 18072758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Third-order thermodynamic perturbation theory for effective potentials that model complex fluids.
    Zhou S; Solana JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021503. PubMed ID: 18850837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semiclassical approach to model quantum fluids using the statistical associating fluid theory for systems with potentials of variable range.
    Trejos VM; Gil-Villegas A
    J Chem Phys; 2012 May; 136(18):184506. PubMed ID: 22583299
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-body perturbation theory versus first order perturbation theory: A comparison based on the square-well fluid.
    Mercier Franco LF; Castier M; Economou IG
    J Chem Phys; 2017 Dec; 147(21):214108. PubMed ID: 29221387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local shear viscosity of strongly inhomogeneous dense fluids: from the hard-sphere to the Lennard-Jones fluids.
    Hoang H; Galliero G
    J Phys Condens Matter; 2013 Dec; 25(48):485001. PubMed ID: 24132101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Density functional theory of inhomogeneous liquids. I. The liquid-vapor interface in Lennard-Jones fluids.
    Lutsko JF
    J Chem Phys; 2007 Aug; 127(5):054701. PubMed ID: 17688351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamically self-consistent theories of fluids interacting through short-range forces.
    Caccamo C; Pellicane G; Costa D; Pini D; Stell G
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt A):5533-43. PubMed ID: 11970428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toward a density-functional theory for the Jagla fluid.
    Gußmann F; Dietrich S; Roth R
    Phys Rev E; 2020 Dec; 102(6-1):062112. PubMed ID: 33465984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermodynamic properties of Lennard-Jones chain molecules: renormalization-group corrections to a modified statistical associating fluid theory.
    Llovell F; Pàmies JC; Vega LF
    J Chem Phys; 2004 Dec; 121(21):10715-24. PubMed ID: 15549957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined temperature and density series for fluid-phase properties. II. Lennard-Jones spheres.
    Elliott JR; Schultz AJ; Kofke DA
    J Chem Phys; 2019 Nov; 151(20):204501. PubMed ID: 31779334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A perturbed-chain equation of state based on Wertheim TPT for the fully flexible LJ chains in the fluid and solid phases.
    Mirzaeinia A; Feyzi F
    J Chem Phys; 2020 Apr; 152(13):134502. PubMed ID: 32268737
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.