These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35291809)

  • 21. Role of renal interstitial hydrostatic pressure in natriuresis of systemic nitric oxide inhibition.
    Haas JA; Khraibi AA; Perrella MA; Knox FG
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F411-4. PubMed ID: 8456954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of pressure in angiotensin II-induced renal injury: chronic servo-control of renal perfusion pressure in rats.
    Mori T; Cowley AW
    Hypertension; 2004 Apr; 43(4):752-9. PubMed ID: 14981064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of meclofenamate on lithium excretion in response to changes in renal perfusion pressure.
    Haas JA; Granger JP; Knox FG
    J Lab Clin Med; 1988 May; 111(5):543-7. PubMed ID: 3361233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autoregulation of renal blood flow in the rat: effects of growth and uninephrectomy.
    Chevalier RL; Kaiser DL
    Am J Physiol; 1983 May; 244(5):F483-7. PubMed ID: 6846538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of renal perfusion pressure on renal function, renin release and renin and angiotensinogen gene expression in rats.
    Moosavi SM; Johns EJ
    J Physiol; 1999 Oct; 520 Pt 1(Pt 1):261-9. PubMed ID: 10517817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Osmotic hypertonicity of the renal medulla during changes in renal perfusion pressure in the rat.
    Dobrowolski L; Badzyńska B; Walkowska A; Sadowski J
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):929-35. PubMed ID: 9518743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Renal tumours in a Tsc2(+/-) mouse model do not show feedback inhibition of Akt and are effectively prevented by rapamycin.
    Yang J; Kalogerou M; Samsel PA; Zhang Y; Griffiths DF; Gallacher J; Sampson JR; Shen MH
    Oncogene; 2015 Feb; 34(7):922-31. PubMed ID: 24632604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytochrome p450-dependent metabolites of arachidonic acid and renal function in the rat.
    Oyekan AO
    Clin Exp Pharmacol Physiol; 2000 Aug; 27(8):581-6. PubMed ID: 10901386
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the renal nerves and angiotensin II in the renal function curve.
    Golin R; Genovesi S; Castoldi G; Wijnmaalen P; Protasoni G; Zanchetti A; Stella A
    Arch Ital Biol; 1999 Aug; 137(4):289-97. PubMed ID: 10443320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a new model for the study of pressure-natriuresis in the rat.
    Roman RJ; Cowley AW
    Am J Physiol; 1985 Feb; 248(2 Pt 2):F190-8. PubMed ID: 3970209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Renal functional responses to the 5-HT1A receptor agonist flesinoxan: effects of controlled renal perfusion pressure.
    Chamienia AL; Johns EJ
    J Pharmacol Exp Ther; 1994 Apr; 269(1):215-20. PubMed ID: 8169828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relation between vasa recta blood flow and renal interstitial hydrostatic pressure during pressure natriuresis.
    Farrugia E; Lockhart JC; Larson TS
    Circ Res; 1992 Nov; 71(5):1153-8. PubMed ID: 1394877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of mechanistic target of rapamycin (mTOR) in renal function and ischaemia-reperfusion induced kidney injury.
    Alshaman R; Truong L; Oyekan A
    Clin Exp Pharmacol Physiol; 2016 Nov; 43(11):1087-1096. PubMed ID: 27555230
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis.
    Jiang L; Xu L; Mao J; Li J; Fang L; Zhou Y; Liu W; He W; Zhao AZ; Yang J; Dai C
    J Am Soc Nephrol; 2013 Jun; 24(7):1114-26. PubMed ID: 23661807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased Perfusion Pressure Drives Renal T-Cell Infiltration in the Dahl Salt-Sensitive Rat.
    Evans LC; Petrova G; Kurth T; Yang C; Bukowy JD; Mattson DL; Cowley AW
    Hypertension; 2017 Sep; 70(3):543-551. PubMed ID: 28696224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of renal medullary circulation on arterial pressure.
    Cowley AW; Roman RJ; Fenoy FJ; Mattson DL
    J Hypertens Suppl; 1992 Dec; 10(7):S187-93. PubMed ID: 1291653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapamycin Inhibition of mTOR Reduces Levels of the Na+/H+ Exchanger 3 in Intestines of Mice and Humans, Leading to Diarrhea.
    Yang J; Zhao X; Patel A; Potru R; Azizi-Ghannad S; Dolinger M; Cao J; Bartholomew C; Mazurkiewicz J; Conti D; Jones D; Huang Y; Zhu XC
    Gastroenterology; 2015 Jul; 149(1):151-62. PubMed ID: 25836987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ANG II-induced downregulation of RBF after a prolonged reduction of renal perfusion pressure is due to pre- and postglomerular constriction.
    Sorensen CM; Leyssac PP; Salomonsson M; Skott O; Holstein-Rathlou NH
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R865-73. PubMed ID: 14715487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The reflex effect of changes in renal perfusion on hindlimb vascular resistance in anaesthetized rabbits.
    Rankin AJ; Ashton N; Swift FV
    Pflugers Arch; 1992 Sep; 421(6):585-90. PubMed ID: 1437520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence against a crucial role of renal medullary perfusion in blood pressure control of hypertensive rats.
    Bądzyńska B; Baranowska I; Gawryś O; Sadowski J
    J Physiol; 2019 Jan; 597(1):211-223. PubMed ID: 30334256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.