BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35292004)

  • 1. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An
    Yang XG; Teng ZL; Zhang ZM; Wang K; Huang R; Chen WM; Wang C; Chen L; Zhang C; Huang JZ; Wang X; Ma X; Geng X
    Front Endocrinol (Lausanne); 2022; 13():894383. PubMed ID: 36060939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk compressive properties of the heel fat pad during walking: a pilot investigation in plantar heel pain.
    Wearing SC; Smeathers JE; Yates B; Urry SR; Dubois P
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):397-402. PubMed ID: 19232452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo biomechanical behavior of the human heel pad during the stance phase of gait.
    Gefen A; Megido-Ravid M; Itzchak Y
    J Biomech; 2001 Dec; 34(12):1661-5. PubMed ID: 11716870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.
    Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography.
    Hsu CC; Chen CP; Lin SC; Tsai WC; Liu HT; Lin YC; Lee HJ; Chen WP
    Ultrasound Med Biol; 2012 Jun; 38(6):943-52. PubMed ID: 22502884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variations in heel pad mechanical properties variation between children and young adults.
    Wang CL; Hsu TC; Shau YW; Wong MK
    J Formos Med Assoc; 1998 Dec; 97(12):850-4. PubMed ID: 9884488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of heel pads reconstructed with flaps.
    Wang CL; Shau YW; Hsu TC; Chen HC; Chien SH
    J Bone Joint Surg Br; 1999 Mar; 81(2):207-11. PubMed ID: 10204922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-rate dependence of viscous properties of the plantar soft tissue identified by a spherical indentation test.
    Negishi T; Ito K; Kamono A; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2020 Feb; 102():103470. PubMed ID: 31605932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography.
    Telfer S; Woodburn J; Turner DE
    Gait Posture; 2014; 39(1):328-32. PubMed ID: 23962596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altered heel-pad mechanical properties in patients with Type 2 diabetes mellitus.
    Hsu TC; Wang CL; Shau YW; Tang FT; Li KL; Chen CY
    Diabet Med; 2000 Dec; 17(12):854-9. PubMed ID: 11168328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-deformation properties of the human heel pad during barefoot walking.
    Wearing SC; Hooper SL; Dubois P; Smeathers JE; Dietze A
    Med Sci Sports Exerc; 2014 Aug; 46(8):1588-94. PubMed ID: 24504425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads.
    Hsu CC; Tsai WC; Hsiao TY; Tseng FY; Shau YW; Wang CL; Lin SC
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):682-6. PubMed ID: 19619918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship of the heel pad compressibility and plantar pressure distribution.
    Kanatli U; Yetkin H; Simsek A; Besli K; Ozturk A
    Foot Ankle Int; 2001 Aug; 22(8):662-5. PubMed ID: 11527028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microchambers and macrochambers in heel pads: are they functionally different?
    Hsu CC; Tsai WC; Wang CL; Pao SH; Shau YW; Chuan YS
    J Appl Physiol (1985); 2007 Jun; 102(6):2227-31. PubMed ID: 17272407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.