These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35292004)

  • 21. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Foot strike and the properties of the human heel pad.
    Ker RF; Bennett MB; Alexander RM; Kester RC
    Proc Inst Mech Eng H; 1989; 203(4):191-6. PubMed ID: 2701955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical properties of the human heel pad: a comparison between populations.
    Rchallis JH; Murdoch C; Winter SL
    J Appl Biomech; 2008 Nov; 24(4):377-81. PubMed ID: 19075307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome.
    Tsai WC; Wang CL; Hsu TC; Hsieh FJ; Tang FT
    Foot Ankle Int; 1999 Oct; 20(10):663-8. PubMed ID: 10541000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex differences in heel pad stiffness during in vivo loading and unloading.
    Ugbolue UC; Yates EL; Wearing SC; Gu Y; Lam WK; Valentin S; Baker JS; Dutheil F; Sculthorpe NF
    J Anat; 2020 Sep; 237(3):520-528. PubMed ID: 33448360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of plantar loading parameters pre and post surgical intervention for hallux vargus.
    Kernozek T; Roehrs T; McGarvey S
    Clin Biomech (Bristol, Avon); 1997 Apr; 12(3):S18-S19. PubMed ID: 11415723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Gender on Mechanical Properties of the Plantar Fascia and Heel Fat Pad.
    Taş S
    Foot Ankle Spec; 2018 Oct; 11(5):403-409. PubMed ID: 29029575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluoroscopic imaging-guided computational analyses to inform internal tissue loads within fat pad of the diabetic foot during gait.
    Zhang X; Teng Z; Geng X; Ma X; Chen WM
    J Biomech; 2023 Aug; 157():111744. PubMed ID: 37535986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in length of the plantar aponeurosis during the stance phase of gait--an in vivo dynamic fluoroscopic study.
    Fessel G; Jacob HA; Wyss Ch; Mittlmeier T; Müller-Gerbl M; Büttner A
    Ann Anat; 2014 Dec; 196(6):471-8. PubMed ID: 25113063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses.
    Silver-Thorn B; Herrmann A; Current T; McGuire J
    Prosthet Orthot Int; 2011 Jun; 35(2):150-62. PubMed ID: 21515899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influences of high-heeled shoe parameters on gait cycle, center of pressure trajectory, and plantar pressure in young females during treadmill walking.
    Shang J; Geng X; Wang C; Chen L; Zhang C; Huang J; Wang X; Yan A; Ma X
    J Orthop Surg (Hong Kong); 2020; 28(2):2309499020921978. PubMed ID: 32390534
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The relationship between the mechanical properties of heel-pad and common clinical measures associated with foot ulcers in patients with diabetes.
    Chatzistergos PE; Naemi R; Sundar L; Ramachandran A; Chockalingam N
    J Diabetes Complications; 2014; 28(4):488-93. PubMed ID: 24795257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigations into the fat pads of the sole of the foot: heel pressure studies.
    Jahss MH; Kummer F; Michelson JD
    Foot Ankle; 1992 Jun; 13(5):227-32. PubMed ID: 1624185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the mechanical properties of the heel pad between young and elderly adults.
    Hsu TC; Wang CL; Tsai WC; Kuo JK; Tang FT
    Arch Phys Med Rehabil; 1998 Sep; 79(9):1101-4. PubMed ID: 9749691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling.
    Mo F; Li J; Yang Z; Zhou S; Behr M
    Ann Biomed Eng; 2019 Dec; 47(12):2356-2371. PubMed ID: 31264043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait Retraining Improves Running Impact Loading and Function in Previously Injured U.S. Military Cadets: A Pilot Study.
    Miller EM; Crowell MS; Morris JB; Mason JS; Zifchock R; Goss DL
    Mil Med; 2021 Nov; 186(11-12):e1077-e1087. PubMed ID: 33215669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.