These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 35292082)

  • 21. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates.
    Field SJ; Ryden P; Wilson D; James SA; Roberts IN; Richardson DJ; Waldron KW; Clarke TA
    Biotechnol Biofuels; 2015; 8():33. PubMed ID: 25861389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation.
    Cheng C; Zhang M; Xue C; Bai F; Zhao X
    J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process intensification through microbial strain evolution: mixed glucose-xylose fermentation in wheat straw hydrolyzates by three generations of recombinant Saccharomyces cerevisiae.
    Novy V; Krahulec S; Wegleiter M; Müller G; Longus K; Klimacek M; Nidetzky B
    Biotechnol Biofuels; 2014 Apr; 7(1):49. PubMed ID: 24708666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA sequencing reveals metabolic and regulatory changes leading to more robust fermentation performance during short-term adaptation of Saccharomyces cerevisiae to lignocellulosic inhibitors.
    van Dijk M; Rugbjerg P; Nygård Y; Olsson L
    Biotechnol Biofuels; 2021 Oct; 14(1):201. PubMed ID: 34654441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybridization and adaptive evolution of diverse
    Peris D; Moriarty RV; Alexander WG; Baker E; Sylvester K; Sardi M; Langdon QK; Libkind D; Wang QM; Bai FY; Leducq JB; Charron G; Landry CR; Sampaio JP; Gonçalves P; Hyma KE; Fay JC; Sato TK; Hittinger CT
    Biotechnol Biofuels; 2017; 10():78. PubMed ID: 28360936
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Largely enhanced bioethanol production through the combined use of lignin-modified sugarcane and xylose fermenting yeast strain.
    Ko JK; Jung JH; Altpeter F; Kannan B; Kim HE; Kim KH; Alper HS; Um Y; Lee SM
    Bioresour Technol; 2018 May; 256():312-320. PubMed ID: 29455099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring grape marc as trove for new thermotolerant and inhibitor-tolerant Saccharomyces cerevisiae strains for second-generation bioethanol production.
    Favaro L; Basaglia M; Trento A; Van Rensburg E; García-Aparicio M; Van Zyl WH; Casella S
    Biotechnol Biofuels; 2013 Nov; 6(1):168. PubMed ID: 24286305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review.
    Parawira W; Tekere M
    Crit Rev Biotechnol; 2011 Mar; 31(1):20-31. PubMed ID: 20513164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae.
    Madhavan A; Srivastava A; Kondo A; Bisaria VS
    Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives.
    Matsushika A; Inoue H; Kodaki T; Sawayama S
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):37-53. PubMed ID: 19572128
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate.
    Stovicek V; Dato L; Almqvist H; Schöpping M; Chekina K; Pedersen LE; Koza A; Figueira D; Tjosås F; Ferreira BS; Forster J; Lidén G; Borodina I
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):22. PubMed ID: 35219341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.
    Demeke MM; Dietz H; Li Y; Foulquié-Moreno MR; Mutturi S; Deprez S; Den Abt T; Bonini BM; Liden G; Dumortier F; Verplaetse A; Boles E; Thevelein JM
    Biotechnol Biofuels; 2013 Jun; 6(1):89. PubMed ID: 23800147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of a GIN11/FRT-based multiple-gene integration technique affording inhibitor-tolerant, hemicellulolytic, xylose-utilizing abilities to industrial Saccharomyces cerevisiae strains for ethanol production from undetoxified lignocellulosic hemicelluloses.
    Hasunuma T; Hori Y; Sakamoto T; Ochiai M; Hatanaka H; Kondo A
    Microb Cell Fact; 2014 Oct; 13():145. PubMed ID: 25306430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate.
    Wallace-Salinas V; Signori L; Li YY; Ask M; Bettiga M; Porro D; Thevelein JM; Branduardi P; Foulquié-Moreno MR; Gorwa-Grauslund M
    AMB Express; 2014; 4():56. PubMed ID: 25147754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown.
    Hasunuma T; Ishii J; Kondo A
    Curr Opin Chem Biol; 2015 Dec; 29():1-9. PubMed ID: 26113493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol.
    Ferreira RM; Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA
    Food Res Int; 2019 Jan; 115():352-359. PubMed ID: 30599952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering.
    Zhao X; Xiong L; Zhang M; Bai F
    Bioresour Technol; 2016 Sep; 215():84-91. PubMed ID: 27067672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.