These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 35292087)
1. Exaggerated false positives by popular differential expression methods when analyzing human population samples. Li Y; Ge X; Peng F; Li W; Li JJ Genome Biol; 2022 Mar; 23(1):79. PubMed ID: 35292087 [TBL] [Abstract][Full Text] [Related]
2. Response to "Neglecting normalization impact in semi-synthetic RNA-seq data simulation generates artificial false positives" and "Winsorization greatly reduces false positives by popular differential expression methods when analyzing human population samples". Ge X; Li Y; Li W; Li JJ Genome Biol; 2024 Oct; 25(1):283. PubMed ID: 39478544 [TBL] [Abstract][Full Text] [Related]
3. Winsorization greatly reduces false positives by popular differential expression methods when analyzing human population samples. Yang L; Zhang X; Chen J Genome Biol; 2024 Oct; 25(1):282. PubMed ID: 39478636 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of RNA-seq differential analysis methods. Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652 [TBL] [Abstract][Full Text] [Related]
5. Neglecting the impact of normalization in semi-synthetic RNA-seq data simulations generates artificial false positives. Hejblum BP; Ba K; Thiébaut R; Agniel D Genome Biol; 2024 Oct; 25(1):281. PubMed ID: 39478633 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data. Baik B; Yoon S; Nam D PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015 [TBL] [Abstract][Full Text] [Related]
7. Robust identification of differentially expressed genes from RNA-seq data. Shahjaman M; Manir Hossain Mollah M; Rezanur Rahman M; Islam SMS; Nurul Haque Mollah M Genomics; 2020 Mar; 112(2):2000-2010. PubMed ID: 31756426 [TBL] [Abstract][Full Text] [Related]
8. Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. Li X; Cooper NGF; O'Toole TE; Rouchka EC BMC Genomics; 2020 Jan; 21(1):75. PubMed ID: 31992223 [TBL] [Abstract][Full Text] [Related]
9. Novel Data Transformations for RNA-seq Differential Expression Analysis. Zhang Z; Yu D; Seo M; Hersh CP; Weiss ST; Qiu W Sci Rep; 2019 Mar; 9(1):4820. PubMed ID: 30886278 [TBL] [Abstract][Full Text] [Related]
10. Robustness of differential gene expression analysis of RNA-seq. Stupnikov A; McInerney CE; Savage KI; McIntosh SA; Emmert-Streib F; Kennedy R; Salto-Tellez M; Prise KM; McArt DG Comput Struct Biotechnol J; 2021; 19():3470-3481. PubMed ID: 34188784 [TBL] [Abstract][Full Text] [Related]
11. BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data. Park K; An J; Gim J; Seo M; Lee W; Park T; Won S BMC Genomics; 2019 Jul; 20(1):540. PubMed ID: 31266443 [TBL] [Abstract][Full Text] [Related]
12. DeClUt: Decluttering differentially expressed genes through clustering of their expression profiles. Zanfardino M; Franzese M; Geraci F Comput Methods Programs Biomed; 2024 Sep; 254():108258. PubMed ID: 38851122 [TBL] [Abstract][Full Text] [Related]
13. Three Differential Expression Analysis Methods for RNA Sequencing: limma, EdgeR, DESeq2. Liu S; Wang Z; Zhu R; Wang F; Cheng Y; Liu Y J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605806 [TBL] [Abstract][Full Text] [Related]
14. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. Varet H; Brillet-Guéguen L; Coppée JY; Dillies MA PLoS One; 2016; 11(6):e0157022. PubMed ID: 27280887 [TBL] [Abstract][Full Text] [Related]
15. A robust (re-)annotation approach to generate unbiased mapping references for RNA-seq-based analyses of differential expression across closely related species. Torres-Oliva M; Almudi I; McGregor AP; Posnien N BMC Genomics; 2016 May; 17():392. PubMed ID: 27220689 [TBL] [Abstract][Full Text] [Related]
16. bestDEG: a web-based application automatically combines various tools to precisely predict differentially expressed genes (DEGs) from RNA-Seq data. Sangket U; Yodsawat P; Nuanpirom J; Sathapondecha P PeerJ; 2022; 10():e14344. PubMed ID: 36389403 [TBL] [Abstract][Full Text] [Related]
18. A benchmarking of workflows for detecting differential splicing and differential expression at isoform level in human RNA-seq studies. Merino GA; Conesa A; Fernández EA Brief Bioinform; 2019 Mar; 20(2):471-481. PubMed ID: 29040385 [TBL] [Abstract][Full Text] [Related]
19. Getting the most out of RNA-seq data analysis. Khang TF; Lau CY PeerJ; 2015; 3():e1360. PubMed ID: 26539333 [TBL] [Abstract][Full Text] [Related]
20. Systematic benchmarking of statistical methods to assess differential expression of circular RNAs. Buratin A; Bortoluzzi S; Gaffo E Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]