These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35292095)

  • 1. Target-oriented prioritization: targeted selection strategy by integrating organismal and molecular traits through predictive analytics in breeding.
    Yang W; Guo T; Luo J; Zhang R; Zhao J; Warburton ML; Xiao Y; Yan J
    Genome Biol; 2022 Mar; 23(1):80. PubMed ID: 35292095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic prediction applied to multiple traits and environments in second season maize hybrids.
    de Oliveira AA; Resende MFR; Ferrão LFV; Amadeu RR; Guimarães LJM; Guimarães CT; Pastina MM; Margarido GRA
    Heredity (Edinb); 2020 Aug; 125(1-2):60-72. PubMed ID: 32472060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Prediction of Complex Traits in an Allogamous Annual Crop: The Case of Maize Single-Cross Hybrids.
    Martins Oliveira IC; Bernardeli A; Soler Guilhen JH; Pastina MM
    Methods Mol Biol; 2022; 2467():543-567. PubMed ID: 35451790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.
    Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P
    Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Omics-based hybrid prediction in maize.
    Westhues M; Schrag TA; Heuer C; Thaller G; Utz HF; Schipprack W; Thiemann A; Seifert F; Ehret A; Schlereth A; Stitt M; Nikoloski Z; Willmitzer L; Schön CC; Scholten S; Melchinger AE
    Theor Appl Genet; 2017 Sep; 130(9):1927-1939. PubMed ID: 28647896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic prediction models for traits differing in heritability for soybean, rice, and maize.
    Kaler AS; Purcell LC; Beissinger T; Gillman JD
    BMC Plant Biol; 2022 Feb; 22(1):87. PubMed ID: 35219296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic prediction of maize microphenotypes provides insights for optimizing selection and mining diversity.
    Yu X; Leiboff S; Li X; Guo T; Ronning N; Zhang X; Muehlbauer GJ; Timmermans MCP; Schnable PS; Scanlon MJ; Yu J
    Plant Biotechnol J; 2020 Dec; 18(12):2456-2465. PubMed ID: 32452105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning bridges omics sciences and plant breeding.
    Yan J; Wang X
    Trends Plant Sci; 2023 Feb; 28(2):199-210. PubMed ID: 36153276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize.
    Liu YH; Zhang M; Scheuring CF; Cilkiz M; Sze SH; Smith CW; Murray SC; Xu W; Zhang HB
    Plant Sci; 2022 Mar; 316():111153. PubMed ID: 35151437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-dimensional multi-omics measured in controlled conditions are useful for maize platform and field trait predictions.
    Ali B; Huguenin-Bizot B; Laurent M; Chaumont F; Maistriaux LC; Nicolas S; Duborjal H; Welcker C; Tardieu F; Mary-Huard T; Moreau L; Charcosset A; Runcie D; Rincent R
    Theor Appl Genet; 2024 Jul; 137(7):175. PubMed ID: 38958724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic Data from Inbred Parents Can Improve Genomic Prediction in Pearl Millet Hybrids.
    Liang Z; Gupta SK; Yeh CT; Zhang Y; Ngu DW; Kumar R; Patil HT; Mungra KD; Yadav DV; Rathore A; Srivastava RK; Gupta R; Yang J; Varshney RK; Schnable PS; Schnable JC
    G3 (Bethesda); 2018 Jul; 8(7):2513-2522. PubMed ID: 29794163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic prediction in multi-environment trials in maize using statistical and machine learning methods.
    Barreto CAV; das Graças Dias KO; de Sousa IC; Azevedo CF; Nascimento ACC; Guimarães LJM; Guimarães CT; Pastina MM; Nascimento M
    Sci Rep; 2024 Jan; 14(1):1062. PubMed ID: 38212638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data.
    Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM
    Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection.
    Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE
    Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximizing efficiency of genomic selection in CIMMYT's tropical maize breeding program.
    Atanda SA; Olsen M; Burgueño J; Crossa J; Dzidzienyo D; Beyene Y; Gowda M; Dreher K; Zhang X; Prasanna BM; Tongoona P; Danquah EY; Olaoye G; Robbins KR
    Theor Appl Genet; 2021 Jan; 134(1):279-294. PubMed ID: 33037897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAK: a machine learning framework improved genomic prediction via multi-target ensemble regressor chains and automatic selection of assistant traits.
    Liang M; Cao S; Deng T; Du L; Li K; An B; Du Y; Xu L; Zhang L; Gao X; Li J; Guo P; Gao H
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36752363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid breeding of rice via genomic selection.
    Cui Y; Li R; Li G; Zhang F; Zhu T; Zhang Q; Ali J; Li Z; Xu S
    Plant Biotechnol J; 2020 Jan; 18(1):57-67. PubMed ID: 31124256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Bayesian Genomic Multi-output Regressor Stacking Model for Predicting Multi-trait Multi-environment Plant Breeding Data.
    Montesinos-López OA; Montesinos-López A; Crossa J; Cuevas J; Montesinos-López JC; Gutiérrez ZS; Lillemo M; Philomin J; Singh R
    G3 (Bethesda); 2019 Oct; 9(10):3381-3393. PubMed ID: 31427455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.).
    Vinayan MT; Seetharam K; Babu R; Zaidi PH; Blummel M; Nair SK
    Sci Rep; 2021 Jan; 11(1):686. PubMed ID: 33436870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing grapevine breeding efficiency through genomic prediction and selection index.
    Brault C; Segura V; Roques M; Lamblin P; Bouckenooghe V; Pouzalgues N; Cunty C; Breil M; Frouin M; Garcin L; Camps L; Ducasse MA; Romieu C; Masson G; Julliard S; Flutre T; Le Cunff L
    G3 (Bethesda); 2024 Apr; 14(4):. PubMed ID: 38401528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.