These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35292099)

  • 41. Heterozygous diploid structure of
    Yi X; Gao Q; Zhang L; Wang X; He Y; Hu F; Zhang J; Zou G; Yang S; Zhou Z; Bao J
    Biotechnol Biofuels; 2019; 12():126. PubMed ID: 31139256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolic engineering of Corynebacterium glutamicum S9114 to enhance the production of l-ornithine driven by glucose and xylose.
    Zhang B; Gao G; Chu XH; Ye BC
    Bioresour Technol; 2019 Jul; 284():204-213. PubMed ID: 30939382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial production host selection for converting second-generation feedstocks into bioproducts.
    Rumbold K; van Buijsen HJ; Overkamp KM; van Groenestijn JW; Punt PJ; van der Werf MJ
    Microb Cell Fact; 2009 Dec; 8():64. PubMed ID: 19958560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans.
    Zou L; Ouyang S; Hu Y; Zheng Z; Ouyang J
    Biotechnol Biofuels; 2021 Nov; 14(1):227. PubMed ID: 34838093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum.
    Wang C; Zhang H; Cai H; Zhou Z; Chen Y; Chen Y; Ouyang P
    Appl Biochem Biotechnol; 2014 Jan; 172(1):340-50. PubMed ID: 24078255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pathway engineering in
    Zhang B; Ye BC
    3 Biotech; 2018 May; 8(5):247. PubMed ID: 29744279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbial production of short-chain alkanes.
    Choi YJ; Lee SY
    Nature; 2013 Oct; 502(7472):571-4. PubMed ID: 24077097
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover.
    Sun Y; Li X; Wu L; Li Y; Li F; Xiu Z; Tong Y
    Biotechnol Biofuels; 2021 Dec; 14(1):233. PubMed ID: 34876182
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving alkane synthesis in Escherichia coli via metabolic engineering.
    Song X; Yu H; Zhu K
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):757-67. PubMed ID: 26476644
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic engineering of
    Deng C; Lv X; Liu Y; Li J; Lu W; Du G; Liu L
    Synth Syst Biotechnol; 2019 Sep; 4(3):120-129. PubMed ID: 31198861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cyclic l-lactide synthesis from lignocellulose biomass by biorefining with complete inhibitor removal and highly simultaneous sugars assimilation.
    He N; Jia J; Qiu Z; Fang C; Lidén G; Liu X; Bao J
    Biotechnol Bioeng; 2022 Jul; 119(7):1903-1915. PubMed ID: 35274740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient production of free fatty acids from ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate.
    Mi L; Qin D; Cheng J; Wang D; Li S; Wei X
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):419-430. PubMed ID: 28097501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Valorization of pyrolysis water: a biorefinery side stream, for 1,2-propanediol production with engineered
    Lange J; Müller F; Bernecker K; Dahmen N; Takors R; Blombach B
    Biotechnol Biofuels; 2017; 10():277. PubMed ID: 29201141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bacterial production and secretion of water-insoluble fuel compounds from cellulose without the supplementation of cellulases.
    Ichikawa S; Karita S
    FEMS Microbiol Lett; 2015 Dec; 362(24):fnv202. PubMed ID: 26490947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Long term storage of dilute acid pretreated corn stover feedstock and ethanol fermentability evaluation.
    Zhang J; Shao S; Bao J
    Bioresour Technol; 2016 Feb; 201():355-9. PubMed ID: 26639616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway.
    Zhang B; Yu M; Wei WP; Ye BC
    Microb Cell Fact; 2018 Jun; 17(1):91. PubMed ID: 29898721
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of aldehyde-producing activities of cyanobacterial acyl-(acyl carrier protein) reductases.
    Kudo H; Nawa R; Hayashi Y; Arai M
    Biotechnol Biofuels; 2016; 9():234. PubMed ID: 27822307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum.
    Matsuura R; Kishida M; Konishi R; Hirata Y; Adachi N; Segawa S; Imao K; Tanaka T; Kondo A
    Biotechnol Bioeng; 2019 Oct; 116(10):2640-2651. PubMed ID: 31184369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Process simulation and economic assessment of hydrothermal pretreatment and enzymatic hydrolysis of multi-feedstock lignocellulose - Separate vs combined processing.
    Ashraf MT; Schmidt JE
    Bioresour Technol; 2018 Feb; 249():835-843. PubMed ID: 29136939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum.
    Huang X; Wang Y; Liu W; Bao J
    Bioresour Technol; 2011 Oct; 102(20):9705-9. PubMed ID: 21880481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.