BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 35292771)

  • 1. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment.
    Petroni G; Buqué A; Coussens LM; Galluzzi L
    Nat Rev Drug Discov; 2022 Jun; 21(6):440-462. PubMed ID: 35292771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the tumor microenvironment to overcome immune checkpoint blockade therapy resistance.
    Li Y; Liu J; Gao L; Liu Y; Meng F; Li X; Qin FX
    Immunol Lett; 2020 Apr; 220():88-96. PubMed ID: 30885690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The immune tumour microenvironment of neuroendocrine tumours and its implications for immune checkpoint inhibitors.
    Takkenkamp TJ; Jalving M; Hoogwater FJH; Walenkamp AME
    Endocr Relat Cancer; 2020 Sep; 27(9):R329-R343. PubMed ID: 32590336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance.
    Weng CY; Kao CX; Chang TS; Huang YH
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33514004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cancer immunotherapy resistance based on immune checkpoints inhibitors: Targets, biomarkers, and remedies.
    Pérez-Ruiz E; Melero I; Kopecka J; Sarmento-Ribeiro AB; García-Aranda M; De Las Rivas J
    Drug Resist Updat; 2020 Dec; 53():100718. PubMed ID: 32736034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiotherapy-induced tumor physical microenvironment remodeling to overcome immunotherapy resistance.
    Peng J; Yin X; Yun W; Meng X; Huang Z
    Cancer Lett; 2023 Apr; 559():216108. PubMed ID: 36863506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors.
    Gjoerup O; Brown CA; Ross JS; Huang RSP; Schrock A; Creeden J; Fabrizio D; Tolba K
    AAPS J; 2020 Oct; 22(6):132. PubMed ID: 33057937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical Potential of Kinase Inhibitors in Combination with Immune Checkpoint Inhibitors for the Treatment of Solid Tumors.
    Ahn R; Ursini-Siegel J
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters.
    Wang S; Xie K; Liu T
    Front Immunol; 2021; 12():690112. PubMed ID: 34367148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reshaping immunometabolism in the tumour microenvironment to improve cancer immunotherapy.
    Chen S; Duan H; Sun G
    Biomed Pharmacother; 2023 Aug; 164():114963. PubMed ID: 37269814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new biological triangle in cancer: intestinal microbiota, immune checkpoint inhibitors and antibiotics.
    Zhang J; Dai Z; Yan C; Zhang W; Wang D; Tang D
    Clin Transl Oncol; 2021 Dec; 23(12):2415-2430. PubMed ID: 34125407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a role for Gallium-67 SPECT in distinguishing progression and pseudoprogresion in oncologic patients receiving immunotherapy?
    Mauri D; Tsiouris S; Gkoura S; Gazouli I; Ntellas P; Amylidis A; Kampletsas L; Fotopoulos A
    Cancer Treat Res Commun; 2021; 28():100441. PubMed ID: 34404012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma.
    Xing R; Gao J; Cui Q; Wang Q
    Front Immunol; 2021; 12():783236. PubMed ID: 34899747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressing resistance to immune checkpoint inhibitor therapy: an urgent unmet need.
    Hu-Lieskovan S; Malouf GG; Jacobs I; Chou J; Liu L; Johnson ML
    Future Oncol; 2021 Apr; 17(11):1401-1439. PubMed ID: 33475012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy in non-small cell lung cancer harbouring driver mutations.
    Addeo A; Passaro A; Malapelle U; Banna GL; Subbiah V; Friedlaender A
    Cancer Treat Rev; 2021 May; 96():102179. PubMed ID: 33798954
    [No Abstract]   [Full Text] [Related]  

  • 16. Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma.
    Lin E; Liu X; Liu Y; Zhang Z; Xie L; Tian K; Liu J; Yu Y
    Front Immunol; 2021; 12():653358. PubMed ID: 33746989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity.
    Donlon NE; Power R; Hayes C; Reynolds JV; Lysaght J
    Cancer Lett; 2021 Apr; 502():84-96. PubMed ID: 33450360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turning tumors from cold to inflamed to improve immunotherapy response.
    Gerard CL; Delyon J; Wicky A; Homicsko K; Cuendet MA; Michielin O
    Cancer Treat Rev; 2021 Dec; 101():102227. PubMed ID: 34656019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy.
    Giannone G; Ghisoni E; Genta S; Scotto G; Tuninetti V; Turinetto M; Valabrega G
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune Checkpoint Inhibitor Therapy for Bone Metastases: Specific Microenvironment and Current Situation.
    Liu C; Wang M; Xu C; Li B; Chen J; Chen J; Wang Z
    J Immunol Res; 2021; 2021():8970173. PubMed ID: 34877360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.