These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35293037)

  • 1. A Hierarchically Encoded Data Storage Device with Controlled Transiency.
    Wei S; Jiang J; Sun L; Li J; Tao TH; Zhou Z
    Adv Mater; 2022 May; 34(20):e2201035. PubMed ID: 35293037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials.
    Shi C; Hu F; Wu R; Xu Z; Shao G; Yu R; Liu XY
    Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Meso Electronics and Photonics Based on Cocoon Silk and Applications.
    Lu C; Wang X; Liu XY
    ACS Biomater Sci Eng; 2024 May; 10(5):2784-2804. PubMed ID: 38597279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics.
    Xu J; Zhao X; Wang Z; Xu H; Hu J; Ma J; Liu Y
    Small; 2019 Jan; 15(4):e1803970. PubMed ID: 30500108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmable Vanishing Multifunctional Optics.
    Cai X; Zhou Z; Tao TH
    Adv Sci (Weinh); 2019 Feb; 6(4):1801746. PubMed ID: 30828536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physically Transient Resistive Switching Memory Based on Silk Protein.
    Wang H; Zhu B; Ma X; Hao Y; Chen X
    Small; 2016 May; 12(20):2715-9. PubMed ID: 27028213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics.
    Jamshidi R; Chen Y; Montazami R
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced Tunable and Reconfigurable Electronic and Photonic Devices Using a Silk-Based Diffractive Optics Platform.
    Cai X; Zhou Z; Tao TH
    Adv Sci (Weinh); 2020 Jul; 7(14):2000475. PubMed ID: 32714758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulated Degradation of Transient Electronic Devices through Multilayer Silk Fibroin Pockets.
    Brenckle MA; Cheng H; Hwang S; Tao H; Paquette M; Kaplan DL; Rogers JA; Huang Y; Omenetto FG
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19870-5. PubMed ID: 26305434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk materials--a road to sustainable high technology.
    Tao H; Kaplan DL; Omenetto FG
    Adv Mater; 2012 Jun; 24(21):2824-37. PubMed ID: 22553118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Multistate Data Storage Devices Fabricated Using Natural Lignin at Room Temperature.
    Park Y; Lee JS
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6207-6212. PubMed ID: 28078883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement.
    Tao H; Hwang SW; Marelli B; An B; Moreau JE; Yang M; Brenckle MA; Kim S; Kaplan DL; Rogers JA; Omenetto FG
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17385-9. PubMed ID: 25422476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane.
    Xiong H; Ling S; Li Y; Duan F; Zhu H; Lu S; Du M
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1126-1134. PubMed ID: 34735849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rewritable optical storage medium of silk proteins using near-field nano-optics.
    Lee W; Zhou Z; Chen X; Qin N; Jiang J; Liu K; Liu M; Tao TH; Li W
    Nat Nanotechnol; 2020 Nov; 15(11):941-947. PubMed ID: 32778805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.
    Wang H; Zhu B; Wang H; Ma X; Hao Y; Chen X
    Small; 2016 Jul; 12(25):3360-5. PubMed ID: 27315137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress in silk fibroin-based flexible electronics.
    Wen DL; Sun DH; Huang P; Huang W; Su M; Wang Y; Han MD; Kim B; Brugger J; Zhang HX; Zhang XS
    Microsyst Nanoeng; 2021; 7():35. PubMed ID: 34567749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticizing Silk Protein for On-Skin Stretchable Electrodes.
    Chen G; Matsuhisa N; Liu Z; Qi D; Cai P; Jiang Y; Wan C; Cui Y; Leow WR; Liu Z; Gong S; Zhang KQ; Cheng Y; Chen X
    Adv Mater; 2018 May; 30(21):e1800129. PubMed ID: 29603437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust, Portable, and Specific Water-Response Silk Film with Noniridescent Pattern Encryption for Information Security.
    Wang Z; Meng F; Zhang S; Meng Y; Wu S; Tang B
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56413-56423. PubMed ID: 33270419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-Free Strategy To Encapsulate Degradable, Implantable Metals in Silk Fibroin.
    Hawker MJ; Guo C; Omenetto FG; Kaplan DL
    ACS Appl Bio Mater; 2018 Nov; 1(5):1677-1686. PubMed ID: 34996217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.