BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35293203)

  • 1. Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs.
    Alves Fávaro M; Ditz D; Yang J; Bergwinkl S; Ghosh AC; Stammler M; Lorentz C; Roeser J; Quadrelli EA; Thomas A; Palkovits R; Canivet J; Wisser FM
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14182-14192. PubMed ID: 35293203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent Triazine Frameworks via a Low-Temperature Polycondensation Approach.
    Wang K; Yang LM; Wang X; Guo L; Cheng G; Zhang C; Jin S; Tan B; Cooper A
    Angew Chem Int Ed Engl; 2017 Nov; 56(45):14149-14153. PubMed ID: 28926688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting.
    Kong D; Han X; Xie J; Ruan Q; Windle CD; Gadipelli S; Shen K; Bai Z; Guo Z; Tang J
    ACS Catal; 2019 Sep; 9(9):7697-7707. PubMed ID: 32064148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palladium as a Superior Cocatalyst to Platinum for Hydrogen Evolution Using Covalent Triazine Frameworks as a Support.
    Liu M; Wang X; Liu J; Wang K; Jin S; Tan B
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12774-12782. PubMed ID: 32077274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Nitrogen Atom Introduction on the Photocatalytic Hydrogen Evolution Activity of Covalent Triazine Frameworks: Experimental and Theoretical Study.
    Han X; Zhao F; Shang Q; Zhao J; Zhong X; Zhang J
    ChemSusChem; 2022 Sep; 15(18):e202200828. PubMed ID: 35869028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent Triazine Framework Films through In-Situ Growth for Photocatalytic Hydrogen Evolution.
    Guo Y; Hu X; Sun R; Wang X; Tan B
    ChemSusChem; 2023 Oct; 16(20):e202300759. PubMed ID: 37365972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water.
    Bi J; Fang W; Li L; Wang J; Liang S; He Y; Liu M; Wu L
    Macromol Rapid Commun; 2015 Oct; 36(20):1799-805. PubMed ID: 26292975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MoS
    Jiang Q; Sun L; Bi J; Liang S; Li L; Yu Y; Wu L
    ChemSusChem; 2018 Mar; 11(6):1108-1113. PubMed ID: 29405652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cobalt-Modified Covalent Triazine-Based Framework as an Efficient Cocatalyst for Visible-Light-Driven Photocatalytic CO
    Bi J; Xu B; Sun L; Huang H; Fang S; Li L; Wu L
    Chempluschem; 2019 Aug; 84(8):1149-1154. PubMed ID: 31943960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversing electron transfer in a covalent triazine framework for efficient photocatalytic hydrogen evolution.
    Zhang L; Zhang Y; Huang X; Bi Y
    Chem Sci; 2022 Jul; 13(27):8074-8079. PubMed ID: 35919433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene Oxide-Assisted Covalent Triazine Framework for Boosting Photocatalytic H
    Liu C; Wang YC; Yang Q; Li XY; Yi F; Liu KW; Cao HM; Wang CJ; Yan HJ
    Chemistry; 2021 Sep; 27(51):13059-13066. PubMed ID: 34190368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of electron-acceptor staggered AB Covalent triazine-based frameworks for enhanced visible-light-driven H
    Li Y; Zhang R; Li C; Li H; Fang Q; Xie T
    J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1449-1456. PubMed ID: 34742064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO
    Jena HS; Krishnaraj C; Schmidt J; Leus K; Van Hecke K; Van Der Voort P
    Chemistry; 2020 Feb; 26(7):1548-1557. PubMed ID: 31603596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting.
    Sun R; Tan B
    Chemistry; 2023 Mar; 29(17):e202203077. PubMed ID: 36504463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks.
    Sun T; Liang Y; Xu Y
    Angew Chem Int Ed Engl; 2022 Jan; 61(4):e202113926. PubMed ID: 34741378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Design of Covalent Triazine Frameworks with Anisotropic Charge Migration for Photocatalytic Hydrogen Production.
    Lan ZA; Chi X; Wu M; Zhang X; Chen X; Zhang G; Wang X
    Small; 2022 Apr; 18(16):e2200129. PubMed ID: 35261149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating the Content of Donor Unit in Donor-Acceptor Covalent Triazine Frameworks for Promoting Photocatalytic H
    He W; Zhou J; Xu W; Li C; Li J; Wang N
    ChemSusChem; 2024 Jan; 17(1):e202301175. PubMed ID: 37724486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong-Base-Assisted Synthesis of a Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting.
    Zhang S; Cheng G; Guo L; Wang N; Tan B; Jin S
    Angew Chem Int Ed Engl; 2020 Apr; 59(15):6007-6014. PubMed ID: 31930618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Crystalline Covalent Triazine Frameworks via a Polycondensation Approach.
    Sun R; Wang X; Wang X; Tan B
    Angew Chem Int Ed Engl; 2022 Apr; 61(15):e202117668. PubMed ID: 35038216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band Gap Tuning of Covalent Triazine-Based Frameworks through Iron Doping for Visible-Light-Driven Photocatalytic Hydrogen Evolution.
    Gao S; Zhang P; Huang G; Chen Q; Bi J; Wu L
    ChemSusChem; 2021 Sep; 14(18):3850-3857. PubMed ID: 34347379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.