These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35293209)

  • 1. Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage.
    Gan Z; Yin J; Xu X; Cheng Y; Yu T
    ACS Nano; 2022 Apr; 16(4):5131-5152. PubMed ID: 35293209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards fast-charging technologies in Li
    Huang H; Niederberger M
    Nanoscale; 2019 Nov; 11(41):19225-19240. PubMed ID: 31532434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage.
    Dong L; Yang W; Yang W; Wang C; Li Y; Xu C; Wan S; He F; Kang F; Wang G
    Nanomicro Lett; 2019 Oct; 11(1):94. PubMed ID: 34138030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
    Kim HS; Cook JB; Lin H; Ko JS; Tolbert SH; Ozolins V; Dunn B
    Nat Mater; 2017 Apr; 16(4):454-460. PubMed ID: 27918566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation.
    Portenkirchner E
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balanced Crystallinity and Nanostructure for SnS
    Gao Y; Hai P; Liu L; Yin J; Gan Z; Ai W; Wu C; Cheng Y; Xu X
    ACS Nano; 2022 Sep; 16(9):14745-14753. PubMed ID: 36094867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode.
    Wei Q; Jiang Y; Qian X; Zhang L; Li Q; Tan S; Zhao K; Yang W; An Q; Guo J; Mai L
    iScience; 2018 Aug; 6():212-221. PubMed ID: 30240611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust Pseudocapacitive Sodium Cation Intercalation Induced by Cobalt Vacancies at Atomically Thin Co
    Yuan D; Dou Y; Tian Y; Adekoya D; Xu L; Zhang S
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18830-18837. PubMed ID: 34142765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design.
    Liu J; Wang J; Xu C; Jiang H; Li C; Zhang L; Lin J; Shen ZX
    Adv Sci (Weinh); 2018 Jan; 5(1):1700322. PubMed ID: 29375964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudocapacitive Sodium Storage in Mesoporous Single-Crystal-like TiO
    Le Z; Liu F; Nie P; Li X; Liu X; Bian Z; Chen G; Wu HB; Lu Y
    ACS Nano; 2017 Mar; 11(3):2952-2960. PubMed ID: 28282109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti
    Patil AM; Kitiphatpiboon N; An X; Hao X; Li S; Hao X; Abudula A; Guan G
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52749-52762. PubMed ID: 33185100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pseudocapacitive Sodium Storage by Ferroelectric Sn
    Huang S; Meng C; Xiao M; Ren S; Wang S; Han D; Li Y; Meng Y
    Small; 2018 May; 14(21):e1704367. PubMed ID: 29676056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
    Wang Y; Song Y; Xia Y
    Chem Soc Rev; 2016 Oct; 45(21):5925-5950. PubMed ID: 27545205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery.
    Qi H; Cao L; Li J; Huang J; Xu Z; Cheng Y; Kong X; Yanagisawa K
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35253-35263. PubMed ID: 27977130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials.
    Fleischmann S; Mitchell JB; Wang R; Zhan C; Jiang DE; Presser V; Augustyn V
    Chem Rev; 2020 Jul; 120(14):6738-6782. PubMed ID: 32597172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pseudocapacitive trimetallic NiCoMn-111 perovskite fluorides for advanced Li-ion supercabatteries.
    Yan T; Huang Y; Ding R; Shi W; Ying D; Jia Z; Tan C; Huang Y; Sun X; Liu E
    Nanoscale Adv; 2021 Sep; 3(19):5703-5710. PubMed ID: 36133260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What about electrochemical behaviors for aurivillius-phase bismuth tungstate? Capacitive or pseudocapacitive.
    Gao JF; Hou JF; Kong LB
    Phys Chem Chem Phys; 2023 Jun; 25(25):16718-16726. PubMed ID: 37283540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbons and electrolytes for advanced supercapacitors.
    Béguin F; Presser V; Balducci A; Frackowiak E
    Adv Mater; 2014 Apr; 26(14):2219-51, 2283. PubMed ID: 24497347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.