These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 35293220)
1. Miola M; Vernè E Nanomedicine (Lond); 2022 Apr; 17(8):499-511. PubMed ID: 35293220 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of magnetite/Alyssum homolocarpum seed gum/Ag nanocomposite and determination of its antibacterial activity. Jalili MA; Allafchian A; Karimzadeh F; Nasiri F Int J Biol Macromol; 2019 Oct; 139():1263-1271. PubMed ID: 31421169 [TBL] [Abstract][Full Text] [Related]
3. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Shahriary M; Veisi H; Hekmati M; Hemmati S Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():57-66. PubMed ID: 29853127 [TBL] [Abstract][Full Text] [Related]
4. Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe Zomorodian K; Veisi H; Mousavi SM; Ataabadi MS; Yazdanpanah S; Bagheri J; Mehr AP; Hemmati S; Veisi H Int J Nanomedicine; 2018; 13():3965-3973. PubMed ID: 30022820 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Shameli K; Ahmad MB; Zargar M; Yunus WM; Ibrahim NA Int J Nanomedicine; 2011; 6():331-41. PubMed ID: 21383858 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticle-decorated on tannic acid-modified magnetite nanoparticles (Fe Veisi H; Moradi SB; Saljooqi A; Safarimehr P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():445-452. PubMed ID: 30948080 [TBL] [Abstract][Full Text] [Related]
7. Improving water treatment using a novel antibacterial kappa-carrageenan-coated magnetite decorated with silver nanoparticles. Seraj A; Allafchian A; Karimzadeh F; Valikhani A; Jalali SAH Environ Sci Pollut Res Int; 2023 Aug; 30(40):92611-92620. PubMed ID: 37491498 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the antibacterial activity of Ag/Fe3O4 nanocomposites synthesized using starch. Ghaseminezhad SM; Shojaosadati SA Carbohydr Polym; 2016 Jun; 144():454-63. PubMed ID: 27083838 [TBL] [Abstract][Full Text] [Related]
9. Novel magnetically separable silver-iron oxide nanoparticles decorated graphitic carbon nitride nano-sheets: A multifunctional photocatalyst via one-step hydrothermal process. Pant B; Park M; Lee JH; Kim HY; Park SJ J Colloid Interface Sci; 2017 Jun; 496():343-352. PubMed ID: 28237752 [TBL] [Abstract][Full Text] [Related]
10. New trimethyl chitosan-based composite nanoparticles as promising antibacterial agents. El-Sherbiny I; Salih E; Reicha F Drug Dev Ind Pharm; 2016 May; 42(5):720-729. PubMed ID: 26266964 [TBL] [Abstract][Full Text] [Related]
11. An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. Van Viet P; Sang TT; Bich NHN; Thi CM J Photochem Photobiol B; 2018 May; 182():108-114. PubMed ID: 29656219 [TBL] [Abstract][Full Text] [Related]
12. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia. Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Shameli K; Ahmad MB; Zargar M; Yunus WM; Rustaiyan A; Ibrahim NA Int J Nanomedicine; 2011; 6():581-90. PubMed ID: 21674015 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation. Tung le M; Cong NX; Huy le T; Lan NT; Phan VN; Hoa NQ; Vinh le K; Thinh NV; Tai le T; Ngo DT; Mølhave K; Huy TQ; Le AT J Nanosci Nanotechnol; 2016 Jun; 16(6):5902-12. PubMed ID: 27427651 [TBL] [Abstract][Full Text] [Related]
15. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
16. One-pot environmentally friendly amino acid mediated synthesis of N-doped graphene-silver nanocomposites with an enhanced multifunctional behavior. Khandelwal M; Kumar A Dalton Trans; 2016 Mar; 45(12):5180-95. PubMed ID: 26888522 [TBL] [Abstract][Full Text] [Related]
17. Synergistic effect of silver NPs immobilized on Fe Ahmad I; Abbasi A; El Bahy ZM; Ikram S Environ Sci Pollut Res Int; 2023 Jul; 30(32):78891-78912. PubMed ID: 37278899 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Shameli K; Ahmad MB; Yunus WZ; Ibrahim NA; Darroudi M Int J Nanomedicine; 2010 Oct; 5():743-51. PubMed ID: 21042420 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process. Upadhyay J; Kumar A; Gogoi B; Buragohain AK Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():8-13. PubMed ID: 26046261 [TBL] [Abstract][Full Text] [Related]
20. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Escárcega-González CE; Garza-Cervantes JA; Vázquez-Rodríguez A; Montelongo-Peralta LZ; Treviño-González MT; Díaz Barriga Castro E; Saucedo-Salazar EM; Chávez Morales RM; Regalado Soto DI; Treviño González FM; Carrazco Rosales JL; Cruz RV; Morones-Ramírez JR Int J Nanomedicine; 2018; 13():2349-2363. PubMed ID: 29713166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]