These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 35293315)
1. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. Ikegaya M; Moriya T; Adachi N; Kawasaki M; Park EY; Miyazaki T J Biol Chem; 2022 May; 298(5):101827. PubMed ID: 35293315 [TBL] [Abstract][Full Text] [Related]
2. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31. Miyazaki T; Ishizaki Y; Ichikawa M; Nishikawa A; Tonozuka T Biochem J; 2015 Jul; 469(1):145-58. PubMed ID: 25942325 [TBL] [Abstract][Full Text] [Related]
3. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31. Ernst HA; Lo Leggio L; Willemoës M; Leonard G; Blum P; Larsen S J Mol Biol; 2006 May; 358(4):1106-24. PubMed ID: 16580018 [TBL] [Abstract][Full Text] [Related]
4. Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Saburi W; Okuyama M; Kumagai Y; Kimura A; Mori H Biochimie; 2015 Jan; 108():140-8. PubMed ID: 25450253 [TBL] [Abstract][Full Text] [Related]
5. A subfamily classification to choreograph the diverse activities within glycoside hydrolase family 31. Arumapperuma T; Li J; Hornung B; Soler NM; Goddard-Borger ED; Terrapon N; Williams SJ J Biol Chem; 2023 Apr; 299(4):103038. PubMed ID: 36806678 [TBL] [Abstract][Full Text] [Related]
6. Structure-function analysis of bacterial GH31 α-galactosidases specific for α-(1→4)-galactobiose. Ikegaya M; Park EY; Miyazaki T FEBS J; 2023 Oct; 290(20):4984-4998. PubMed ID: 37438884 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31. Miyazaki T; Park EY FEBS Lett; 2020 Jul; 594(14):2282-2293. PubMed ID: 32367553 [TBL] [Abstract][Full Text] [Related]
8. Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases. Nakamura S; Nihira T; Kurata R; Nakai H; Funane K; Park EY; Miyazaki T J Biol Chem; 2021 Dec; 297(6):101366. PubMed ID: 34728215 [TBL] [Abstract][Full Text] [Related]
9. Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis. Kohno M; Arakawa T; Ota H; Mori T; Nishimoto T; Fushinobu S J Biol Chem; 2018 Oct; 293(43):16874-16888. PubMed ID: 30181215 [TBL] [Abstract][Full Text] [Related]
10. Structural and mutational analysis of substrate recognition in kojibiose phosphorylase. Okada S; Yamamoto T; Watanabe H; Nishimoto T; Chaen H; Fukuda S; Wakagi T; Fushinobu S FEBS J; 2014 Feb; 281(3):778-86. PubMed ID: 24255995 [TBL] [Abstract][Full Text] [Related]
11. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Okuyama M; Saburi W; Mori H; Kimura A Cell Mol Life Sci; 2016 Jul; 73(14):2727-51. PubMed ID: 27137181 [TBL] [Abstract][Full Text] [Related]
12. A Broad-Spectrum α-Glucosidase of Glycoside Hydrolase Family 13 from Marinovum sp., a Member of the Roseobacter Clade. Li J; Mui JW; da Silva BM; Pires DEV; Ascher DB; Madiedo Soler N; Goddard-Borger ED; Williams SJ Appl Biochem Biotechnol; 2024 Jan; ():. PubMed ID: 38180643 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 α-1,3-glucanase from Paenibacillus glycanilyticus FH11. Itoh T; Intuy R; Suyotha W; Hayashi J; Yano S; Makabe K; Wakayama M; Hibi T FEBS J; 2020 Jun; 287(12):2524-2543. PubMed ID: 31788942 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism. Rozeboom HJ; Yu S; Madrid S; Kalk KH; Zhang R; Dijkstra BW J Biol Chem; 2013 Sep; 288(37):26764-74. PubMed ID: 23902768 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. Kurakata Y; Uechi A; Yoshida H; Kamitori S; Sakano Y; Nishikawa A; Tonozuka T J Mol Biol; 2008 Aug; 381(1):116-28. PubMed ID: 18586271 [TBL] [Abstract][Full Text] [Related]
16. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31. Janecek S; Svensson B; MacGregor EA FEBS Lett; 2007 Apr; 581(7):1261-8. PubMed ID: 17349635 [TBL] [Abstract][Full Text] [Related]
17. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases. Chaudet MM; Rose DR Biochem Cell Biol; 2016 Aug; 94(4):323-30. PubMed ID: 27459002 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for enzyme bifunctionality - the case of Gan1D from Geobacillus stearothermophilus. Lansky S; Zehavi A; Belrhali H; Shoham Y; Shoham G FEBS J; 2017 Nov; 284(22):3931-3953. PubMed ID: 28975708 [TBL] [Abstract][Full Text] [Related]
19. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi. Chen W; Xie T; Shao Y; Chen F PLoS One; 2012; 7(11):e49679. PubMed ID: 23166747 [TBL] [Abstract][Full Text] [Related]
20. Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase. Miyazaki T; Ikegaya M; Alonso-Gil S Biochimie; 2022 Apr; 195():90-99. PubMed ID: 34826537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]