BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35293315)

  • 1. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides.
    Ikegaya M; Moriya T; Adachi N; Kawasaki M; Park EY; Miyazaki T
    J Biol Chem; 2022 May; 298(5):101827. PubMed ID: 35293315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical characterization of novel bacterial α-galactosidases belonging to glycoside hydrolase family 31.
    Miyazaki T; Ishizaki Y; Ichikawa M; Nishikawa A; Tonozuka T
    Biochem J; 2015 Jul; 469(1):145-58. PubMed ID: 25942325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the Sulfolobus solfataricus alpha-glucosidase: implications for domain conservation and substrate recognition in GH31.
    Ernst HA; Lo Leggio L; Willemoës M; Leonard G; Blum P; Larsen S
    J Mol Biol; 2006 May; 358(4):1106-24. PubMed ID: 16580018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity.
    Saburi W; Okuyama M; Kumagai Y; Kimura A; Mori H
    Biochimie; 2015 Jan; 108():140-8. PubMed ID: 25450253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A subfamily classification to choreograph the diverse activities within glycoside hydrolase family 31.
    Arumapperuma T; Li J; Hornung B; Soler NM; Goddard-Borger ED; Terrapon N; Williams SJ
    J Biol Chem; 2023 Apr; 299(4):103038. PubMed ID: 36806678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-function analysis of bacterial GH31 α-galactosidases specific for α-(1→4)-galactobiose.
    Ikegaya M; Park EY; Miyazaki T
    FEBS J; 2023 Oct; 290(20):4984-4998. PubMed ID: 37438884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the Enterococcus faecalis α-N-acetylgalactosaminidase, a member of the glycoside hydrolase family 31.
    Miyazaki T; Park EY
    FEBS Lett; 2020 Jul; 594(14):2282-2293. PubMed ID: 32367553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a bacterial α-1,2-glucosidase defines mechanisms of hydrolysis and substrate specificity in GH65 family hydrolases.
    Nakamura S; Nihira T; Kurata R; Nakai H; Funane K; Park EY; Miyazaki T
    J Biol Chem; 2021 Dec; 297(6):101366. PubMed ID: 34728215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis.
    Kohno M; Arakawa T; Ota H; Mori T; Nishimoto T; Fushinobu S
    J Biol Chem; 2018 Oct; 293(43):16874-16888. PubMed ID: 30181215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and mutational analysis of substrate recognition in kojibiose phosphorylase.
    Okada S; Yamamoto T; Watanabe H; Nishimoto T; Chaen H; Fukuda S; Wakagi T; Fushinobu S
    FEBS J; 2014 Feb; 281(3):778-86. PubMed ID: 24255995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions.
    Okuyama M; Saburi W; Mori H; Kimura A
    Cell Mol Life Sci; 2016 Jul; 73(14):2727-51. PubMed ID: 27137181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Broad-Spectrum α-Glucosidase of Glycoside Hydrolase Family 13 from Marinovum sp., a Member of the Roseobacter Clade.
    Li J; Mui JW; da Silva BM; Pires DEV; Ascher DB; Madiedo Soler N; Goddard-Borger ED; Williams SJ
    Appl Biochem Biotechnol; 2024 Jan; ():. PubMed ID: 38180643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 α-1,3-glucanase from Paenibacillus glycanilyticus FH11.
    Itoh T; Intuy R; Suyotha W; Hayashi J; Yano S; Makabe K; Wakayama M; Hibi T
    FEBS J; 2020 Jun; 287(12):2524-2543. PubMed ID: 31788942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of α-1,4-glucan lyase, a unique glycoside hydrolase family member with a novel catalytic mechanism.
    Rozeboom HJ; Yu S; Madrid S; Kalk KH; Zhang R; Dijkstra BW
    J Biol Chem; 2013 Sep; 288(37):26764-74. PubMed ID: 23902768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63.
    Kurakata Y; Uechi A; Yoshida H; Kamitori S; Sakano Y; Nishikawa A; Tonozuka T
    J Mol Biol; 2008 Aug; 381(1):116-28. PubMed ID: 18586271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A remote but significant sequence homology between glycoside hydrolase clan GH-H and family GH31.
    Janecek S; Svensson B; MacGregor EA
    FEBS Lett; 2007 Apr; 581(7):1261-8. PubMed ID: 17349635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent evolution for diverse substrate recognition by family 31 glycoside hydrolases.
    Chaudet MM; Rose DR
    Biochem Cell Biol; 2016 Aug; 94(4):323-30. PubMed ID: 27459002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for enzyme bifunctionality - the case of Gan1D from Geobacillus stearothermophilus.
    Lansky S; Zehavi A; Belrhali H; Shoham Y; Shoham G
    FEBS J; 2017 Nov; 284(22):3931-3953. PubMed ID: 28975708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenomic relationships between amylolytic enzymes from 85 strains of fungi.
    Chen W; Xie T; Shao Y; Chen F
    PLoS One; 2012; 7(11):e49679. PubMed ID: 23166747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase.
    Miyazaki T; Ikegaya M; Alonso-Gil S
    Biochimie; 2022 Apr; 195():90-99. PubMed ID: 34826537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.