BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 35293698)

  • 1. Recent Advances in Structure Separation of Single-Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics.
    Wei X; Li S; Wang W; Zhang X; Zhou W; Xie S; Liu H
    Adv Sci (Weinh); 2022 May; 9(14):e2200054. PubMed ID: 35293698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress on the structure separation of single-wall carbon nanotubes.
    Cui J; Yang D; Zeng X; Zhou N; Liu H
    Nanotechnology; 2017 Nov; 28(45):452001. PubMed ID: 28877034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous chirality and enantiomer separation of metallic single-wall carbon nanotubes by gel column chromatography.
    Tanaka T; Urabe Y; Hirakawa T; Kataura H
    Anal Chem; 2015 Sep; 87(18):9467-72. PubMed ID: 26308487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectronic properties of single-wall carbon nanotubes.
    Nanot S; Hároz EH; Kim JH; Hauge RH; Kono J
    Adv Mater; 2012 Sep; 24(36):4977-94. PubMed ID: 22911973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes.
    Bati ASR; Yu L; Batmunkh M; Shapter JG
    Nanoscale; 2018 Dec; 10(47):22087-22139. PubMed ID: 30475354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Processing of High-Purity Semiconducting Single-Walled Carbon Nanotubes for Electronics Devices.
    Qiu S; Wu K; Gao B; Li L; Jin H; Li Q
    Adv Mater; 2019 Mar; 31(9):e1800750. PubMed ID: 30062782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes.
    Liu C; Cheng HM
    J Am Chem Soc; 2016 Jun; 138(21):6690-8. PubMed ID: 27149629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.
    Liu B; Wu F; Gui H; Zheng M; Zhou C
    ACS Nano; 2017 Jan; 11(1):31-53. PubMed ID: 28072518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological Profiling of Highly Purified Metallic and Semiconducting Single-Walled Carbon Nanotubes in the Rodent Lung and E. coli.
    Wang X; Mansukhani ND; Guiney LM; Lee JH; Li R; Sun B; Liao YP; Chang CH; Ji Z; Xia T; Hersam MC; Nel AE
    ACS Nano; 2016 Jun; 10(6):6008-19. PubMed ID: 27159184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Doping Modulation and Applications of Structure-Sorted Single-Walled Carbon Nanotubes: A Review.
    Liu Y; Zhao Z; Kang L; Qiu S; Li Q
    Small; 2024 Jan; 20(3):e2304075. PubMed ID: 37675833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes.
    Wang J; Lei T
    Nanoscale; 2022 Jan; 14(4):1096-1106. PubMed ID: 34989744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiral Countercurrent Chromatography Enrichment, Characterization, and Assays of Carbon Nanotube Chiralities for Use in Biosensors.
    Stefansson S; Lazo-Portugal R; Ahn S; Knight M
    ACS Omega; 2017 Mar; 2(3):1156-1162. PubMed ID: 30023629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, Sorting, and Applications of Single-Chirality Single-Walled Carbon Nanotubes.
    Kharlamova MV; Burdanova MG; Paukov MI; Kramberger C
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors.
    Penzo E; Palma M; Chenet DA; Ao G; Zheng M; Hone JC; Wind SJ
    ACS Nano; 2016 Feb; 10(2):2975-81. PubMed ID: 26807948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant Micelle-Driven High-Efficiency and High-Resolution Length Separation of Carbon Nanotubes for Electronic Applications.
    Ling S; Wei X; Luo X; Li X; Li S; Xiong F; Zhou W; Xie S; Liu H
    Small; 2024 Jun; 20(23):e2400303. PubMed ID: 38501842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical isomer separation of single-chirality carbon nanotubes using gel column chromatography.
    Liu H; Tanaka T; Kataura H
    Nano Lett; 2014 Nov; 14(11):6237-43. PubMed ID: 25347592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Length-Dependent Enantioselectivity of Carbon Nanotubes by Gel Chromatography.
    Wei X; Luo X; Li S; Zhou W; Xie S; Liu H
    ACS Nano; 2023 May; 17(9):8393-8402. PubMed ID: 37092905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation.
    Reis WG; Weitz RT; Kettner M; Kraus A; Schwab MG; Tomović Ž; Krupke R; Mikhael J
    Sci Rep; 2016 May; 6():26259. PubMed ID: 27188435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent.
    Liu CH; Liu YY; Zhang YH; Wei RR; Zhang HL
    Phys Chem Chem Phys; 2009 Sep; 11(33):7257-67. PubMed ID: 19672537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.