BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35293725)

  • 1. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against
    Liu S; Xie L; Su J; Tian B; Fang A; Yu Y; Bi C; Yang Y
    J Agric Food Chem; 2022 Mar; 70(12):3719-3729. PubMed ID: 35293725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A R2R3 MYB Transcription Factor,
    Hawku MD; He F; Bai X; Islam MA; Huang X; Kang Z; Guo J
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430549
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Islam MA; Guo J; Peng H; Tian S; Bai X; Zhu H; Kang Z; Guo J
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33287151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1.
    Wang J; Wang J; Li J; Shang H; Chen X; Hu X
    Plant J; 2021 Dec; 108(5):1241-1255. PubMed ID: 34583419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust.
    Wang Y; Huang L; Luo W; Jin Y; Gong F; He J; Liu D; Zheng Y; Wu B
    Gene; 2021 Feb; 768():145290. PubMed ID: 33157204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew.
    Zhang H; Yang Y; Wang C; Liu M; Li H; Fu Y; Wang Y; Nie Y; Liu X; Ji W
    BMC Genomics; 2014 Oct; 15(1):898. PubMed ID: 25318379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry.
    Zhao J; Duan W; Xu Y; Zhang C; Wang L; Wang J; Tian S; Pei G; Zhan G; Zhuang H; Zhao J; Kang Z
    Mol Plant Microbe Interact; 2021 Feb; 34(2):198-209. PubMed ID: 33118856
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative transcriptomic insights into molecular mechanisms of the susceptibility wheat variety MX169 response to
    Lv X; Deng J; Zhou C; Abdullah A; Yang Z; Wang Z; Yang L; Zhao B; Li Y; Ma Z
    Microbiol Spectr; 2024 Jun; ():e0377423. PubMed ID: 38916358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici.
    Jiang Z; Ge S; Xing L; Han D; Kang Z; Zhang G; Wang X; Wang X; Chen P; Cao A
    J Exp Bot; 2013 Sep; 64(12):3735-46. PubMed ID: 23881396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici).
    Wang X; Wang X; Deng L; Chang H; Dubcovsky J; Feng H; Han Q; Huang L; Kang Z
    J Exp Bot; 2014 Sep; 65(17):4807-20. PubMed ID: 24963004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of
    Wamalwa MN; Wanyera R; Rodriguez-Algaba J; Boyd LA; Owuoche J; Ogendo J; Bhavani S; Uauy C; Justesen AF; Hovmøller M
    Plant Dis; 2022 Feb; 106(2):701-710. PubMed ID: 34633239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions.
    Ozketen AC; Andac-Ozketen A; Dagvadorj B; Demiralay B; Akkaya MS
    Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33275764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of stripe rust of wheat using indigenous endophytic bacteria at seedling and adult plant stage.
    Kiani T; Mehboob F; Hyder MZ; Zainy Z; Xu L; Huang L; Farrakh S
    Sci Rep; 2021 Jul; 11(1):14473. PubMed ID: 34262108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp.
    Xia C; Lei Y; Wang M; Chen W; Chen X
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554716
    [No Abstract]   [Full Text] [Related]  

  • 15.
    Hawku MD; Goher F; Islam MA; Guo J; He F; Bai X; Yuan P; Kang Z; Guo J
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome and Proteome-Based Network Analysis Reveals a Model of Gene Activation in Wheat Resistance to Stripe Rust.
    Zhang H; Fu Y; Guo H; Zhang L; Wang C; Song W; Yan Z; Wang Y; Ji W
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a Hyperparasitic
    Wang N; Fan X; Zhang S; Liu B; He M; Chen X; Tang C; Kang Z; Wang X
    Front Microbiol; 2020; 11():1277. PubMed ID: 32754121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.
    Zhan G; Tian Y; Wang F; Chen X; Guo J; Jiao M; Huang L; Kang Z
    PLoS One; 2014; 9(11):e111484. PubMed ID: 25369036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene.
    Wang B; Sun Y; Song N; Zhao M; Liu R; Feng H; Wang X; Kang Z
    New Phytol; 2017 Jul; 215(1):338-350. PubMed ID: 28464281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stripe rust effector Pst18363 targets and stabilises TaNUDX23 that promotes stripe rust disease.
    Yang Q; Huai B; Lu Y; Cai K; Guo J; Zhu X; Kang Z; Guo J
    New Phytol; 2020 Jan; 225(2):880-895. PubMed ID: 31529497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.