These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35293725)
1. Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat against Liu S; Xie L; Su J; Tian B; Fang A; Yu Y; Bi C; Yang Y J Agric Food Chem; 2022 Mar; 70(12):3719-3729. PubMed ID: 35293725 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic insights into molecular mechanisms of the susceptibility wheat variety MX169 response to Lv X; Deng J; Zhou C; Abdullah A; Yang Z; Wang Z; Yang L; Zhao B; Li Y; Ma Z Microbiol Spectr; 2024 Aug; 12(8):e0377423. PubMed ID: 38916358 [TBL] [Abstract][Full Text] [Related]
3. A R2R3 MYB Transcription Factor, Hawku MD; He F; Bai X; Islam MA; Huang X; Kang Z; Guo J Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430549 [TBL] [Abstract][Full Text] [Related]
4. Islam MA; Guo J; Peng H; Tian S; Bai X; Zhu H; Kang Z; Guo J Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33287151 [TBL] [Abstract][Full Text] [Related]
5. The RLK protein TaCRK10 activates wheat high-temperature seedling-plant resistance to stripe rust through interacting with TaH2A.1. Wang J; Wang J; Li J; Shang H; Chen X; Hu X Plant J; 2021 Dec; 108(5):1241-1255. PubMed ID: 34583419 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome analysis provides insights into the mechanisms underlying wheat cultivar Shumai126 responding to stripe rust. Wang Y; Huang L; Luo W; Jin Y; Gong F; He J; Liu D; Zheng Y; Wu B Gene; 2021 Feb; 768():145290. PubMed ID: 33157204 [TBL] [Abstract][Full Text] [Related]
7. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. Zhang H; Yang Y; Wang C; Liu M; Li H; Fu Y; Wang Y; Nie Y; Liu X; Ji W BMC Genomics; 2014 Oct; 15(1):898. PubMed ID: 25318379 [TBL] [Abstract][Full Text] [Related]
8. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry. Zhao J; Duan W; Xu Y; Zhang C; Wang L; Wang J; Tian S; Pei G; Zhan G; Zhuang H; Zhao J; Kang Z Mol Plant Microbe Interact; 2021 Feb; 34(2):198-209. PubMed ID: 33118856 [No Abstract] [Full Text] [Related]
9. RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. Jiang Z; Ge S; Xing L; Han D; Kang Z; Zhang G; Wang X; Wang X; Chen P; Cao A J Exp Bot; 2013 Sep; 64(12):3735-46. PubMed ID: 23881396 [TBL] [Abstract][Full Text] [Related]
10. Wheat TaNPSN SNARE homologues are involved in vesicle-mediated resistance to stripe rust (Puccinia striiformis f. sp. tritici). Wang X; Wang X; Deng L; Chang H; Dubcovsky J; Feng H; Han Q; Huang L; Kang Z J Exp Bot; 2014 Sep; 65(17):4807-20. PubMed ID: 24963004 [TBL] [Abstract][Full Text] [Related]
12. In-depth secretome analysis of Puccinia striiformis f. sp. tritici in infected wheat uncovers effector functions. Ozketen AC; Andac-Ozketen A; Dagvadorj B; Demiralay B; Akkaya MS Biosci Rep; 2020 Dec; 40(12):. PubMed ID: 33275764 [TBL] [Abstract][Full Text] [Related]
13. Control of stripe rust of wheat using indigenous endophytic bacteria at seedling and adult plant stage. Kiani T; Mehboob F; Hyder MZ; Zainy Z; Xu L; Huang L; Farrakh S Sci Rep; 2021 Jul; 11(1):14473. PubMed ID: 34262108 [TBL] [Abstract][Full Text] [Related]
14. A Putative Effector Pst-18220, from Tian M; Zhang Z; Bi X; Xue Y; Zhou J; Yuan B; Feng Z; Li L; Wang J Biomolecules; 2024 Aug; 14(9):. PubMed ID: 39334858 [TBL] [Abstract][Full Text] [Related]
15. An Avirulence Gene Cluster in the Wheat Stripe Rust Pathogen (Puccinia striiformis f. sp. Xia C; Lei Y; Wang M; Chen W; Chen X mSphere; 2020 Jun; 5(3):. PubMed ID: 32554716 [No Abstract] [Full Text] [Related]
16. Hawku MD; Goher F; Islam MA; Guo J; He F; Bai X; Yuan P; Kang Z; Guo J Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669850 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome and Proteome-Based Network Analysis Reveals a Model of Gene Activation in Wheat Resistance to Stripe Rust. Zhang H; Fu Y; Guo H; Zhang L; Wang C; Song W; Yan Z; Wang Y; Ji W Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30836695 [TBL] [Abstract][Full Text] [Related]
18. Identification of a Hyperparasitic Wang N; Fan X; Zhang S; Liu B; He M; Chen X; Tang C; Kang Z; Wang X Front Microbiol; 2020; 11():1277. PubMed ID: 32754121 [TBL] [Abstract][Full Text] [Related]
19. A novel fungal hyperparasite of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust. Zhan G; Tian Y; Wang F; Chen X; Guo J; Jiao M; Huang L; Kang Z PLoS One; 2014; 9(11):e111484. PubMed ID: 25369036 [TBL] [Abstract][Full Text] [Related]
20. Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. Wang B; Sun Y; Song N; Zhao M; Liu R; Feng H; Wang X; Kang Z New Phytol; 2017 Jul; 215(1):338-350. PubMed ID: 28464281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]