These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 35293749)

  • 1. Voltage-Induced Adsorption of Cationic Nanoparticles on Lipid Membranes.
    Chiarpotti MV; Longo GS; Del Pópolo MG
    J Phys Chem B; 2022 Mar; 126(11):2230-2240. PubMed ID: 35293749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticles modified with cell penetrating peptides: Assessing adsorption on membranes containing acidic lipids.
    Chiarpotti MV; Longo GS; Del Pópolo MG
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111373. PubMed ID: 33045543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes.
    May S; Harries D; Ben-Shaul A
    Biophys J; 2000 Oct; 79(4):1747-60. PubMed ID: 11023883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of zwitterionic lipids on the electrostatic adsorption of macroions onto mixed lipid membranes.
    Haugen A; May S
    J Chem Phys; 2007 Dec; 127(21):215104. PubMed ID: 18067381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of cell penetrating peptides on lipid membranes: sequence and membrane acidity regulate surface binding.
    Ramírez PG; Del Pópolo MG; Vila JA; Longo GS
    Phys Chem Chem Phys; 2020 Oct; 22(40):23399-23410. PubMed ID: 33048078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach.
    Salis B; Pugliese G; Pellegrino T; Diaspro A; Dante S
    ACS Chem Neurosci; 2019 Jan; 10(1):618-627. PubMed ID: 30339349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible charged macromolecules on mixed fluid lipid membranes: theory and Monte Carlo simulations.
    Tzlil S; Ben-Shaul A
    Biophys J; 2005 Nov; 89(5):2972-87. PubMed ID: 16126828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic-triggered exothermic antibody adsorption to the cellulose nanoparticles.
    Murakami K; Nagatoishi S; Kasahara K; Nagai H; Sasajima Y; Sasaki R; Tsumoto K
    Anal Biochem; 2021 Nov; 632():114337. PubMed ID: 34391727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption and insertion of polyarginine peptides into membrane pores: The trade-off between electrostatics, acid-base chemistry and pore formation energy.
    Ramírez PG; Del Pópolo MG; Vila JA; Szleifer I; Longo GS
    J Colloid Interface Sci; 2019 Sep; 552():701-711. PubMed ID: 31176053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the electrokinetic charge of neurotrophis-based nanocarriers: protein distribution, toxicity, and oxidative stress in in vitro setting.
    Dąbkowska M; Ulańczyk Z; Łuczkowska K; Rogińska D; Sobuś A; Wasilewska M; Olszewska M; Jakubowska K; Machaliński B
    J Nanobiotechnology; 2021 Aug; 19(1):258. PubMed ID: 34454520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zeta potential measurement.
    Clogston JD; Patri AK
    Methods Mol Biol; 2011; 697():63-70. PubMed ID: 21116954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of lipid liquid crystalline nanoparticles on cationic, hydrophilic, and hydrophobic surfaces.
    Chang DP; Jankunec M; Barauskas J; Tiberg F; Nylander T
    ACS Appl Mater Interfaces; 2012 May; 4(5):2643-51. PubMed ID: 22515950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics.
    Fang B; Jiang Y; Nüsslein K; Rotello VM; Santore MM
    Colloids Surf B Biointerfaces; 2015 Jan; 125():255-63. PubMed ID: 25480668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhomogeneity of polylysine adsorption layers on lipid membranes revealed by theoretical analysis of electrokinetic data and molecular dynamics simulations.
    Molotkovsky RJ; Galimzyanov TR; Khomich DA; Nesterenko AM; Ermakov YA
    Bioelectrochemistry; 2021 Oct; 141():107828. PubMed ID: 34020399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of charges and polymer mechanical stiffness in the mechanism and kinetics of formation of liponanoparticles probed by the supported bilayer model approach.
    N'Diaye M; Michel JP; Rosilio V
    Phys Chem Chem Phys; 2019 Feb; 21(8):4306-4319. PubMed ID: 30724271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.