These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35293918)

  • 21. Loops and Cycles at Surfaces: The Unique Properties of Topological Polymer Brushes.
    Benetti EM; Divandari M; Ramakrishna SN; Morgese G; Yan W; Trachsel L
    Chemistry; 2017 Sep; 23(51):12433-12442. PubMed ID: 28558133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stimuli-sensitive intrinsically disordered protein brushes.
    Srinivasan N; Bhagawati M; Ananthanarayanan B; Kumar S
    Nat Commun; 2014 Oct; 5():5145. PubMed ID: 25312006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.
    Barbey R; Kauffmann E; Ehrat M; Klok HA
    Biomacromolecules; 2010 Dec; 11(12):3467-79. PubMed ID: 21090572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties.
    Yang J; Chen H; Xiao S; Shen M; Chen F; Fan P; Zhong M; Zheng J
    Langmuir; 2015 Aug; 31(33):9125-33. PubMed ID: 26245712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymer brush-based approaches for the development of infection-resistant surfaces.
    Hadjesfandiari N; Yu K; Mei Y; Kizhakkedathu JN
    J Mater Chem B; 2014 Aug; 2(31):4968-4978. PubMed ID: 32261828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Lateral Deformation by Thermoresponsive Polymer Brushes on the Measured Friction Forces.
    Ramakrishna SN; Cirelli M; Divandari M; Benetti EM
    Langmuir; 2017 May; 33(17):4164-4171. PubMed ID: 28394137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tribological properties of hydrophilic polymer brushes under wet conditions.
    Kobayashi M; Takahara A
    Chem Rec; 2010 Aug; 10(4):208-16. PubMed ID: 20533448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Friction between ring polymer brushes.
    Erbaş A; Paturej J
    Soft Matter; 2015 Apr; 11(16):3139-48. PubMed ID: 25747253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate-Independent Micropatterning of Polymer Brushes Based on Photolytic Deactivation of Chemical Vapor Deposition Based Surface-Initiated Atom-Transfer Radical Polymerization Initiator Films.
    Kumar R; Welle A; Becker F; Kopyeva I; Lahann J
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):31965-31976. PubMed ID: 30180547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthetic Semiflexible and Bioactive Brushes.
    Voerman D; Schluck M; Weiden J; Joosten B; Eggermont LJ; van den Eijnde T; Ignacio B; Cambi A; Figdor CG; Kouwer PHJ; Verdoes M; Hammink R; Rowan AE
    Biomacromolecules; 2019 Jul; 20(7):2587-2597. PubMed ID: 31150222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of polymer brush architecture on antibiofouling properties.
    Gunkel G; Weinhart M; Becherer T; Haag R; Huck WT
    Biomacromolecules; 2011 Nov; 12(11):4169-72. PubMed ID: 21932841
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioinspired thermoresponsive nanoscaled coatings: Tailor-made polymer brushes with bioconjugated arginine-glycine-aspartic acid-peptides.
    König U; Psarra E; Guskova O; Bittrich E; Eichhorn KJ; Müller M; Welzel PB; Stamm M; Uhlmann P
    Biointerphases; 2018 May; 13(2):021002. PubMed ID: 29776313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vapor-deposited functional polymer thin films in biological applications.
    Khlyustova A; Cheng Y; Yang R
    J Mater Chem B; 2020 Aug; 8(31):6588-6609. PubMed ID: 32756662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer brushes and their possible applications in artificial cilia research (Review).
    Zhu J; Jiang X; Zhong J; Duan Y
    Mol Med Rep; 2017 Jun; 15(6):3936-3942. PubMed ID: 28487963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial friction and adhesion of polymer brushes.
    Landherr LJ; Cohen C; Agarwal P; Archer LA
    Langmuir; 2011 Aug; 27(15):9387-95. PubMed ID: 21696203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Preconditioning Influences the Antifouling Capabilities of Zwitterionic and Nonionic Polymer Brushes.
    Víšová I; Vrabcová M; Forinová M; Zhigunová Y; Mironov V; Houska M; Bittrich E; Eichhorn KJ; Hashim H; Schovánek P; Dejneka A; Vaisocherová-Lísalová H
    Langmuir; 2020 Jul; 36(29):8485-8493. PubMed ID: 32506911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Friction and normal interaction forces between irreversibly attached weakly charged polymer brushes.
    Liberelle B; Giasson S
    Langmuir; 2008 Feb; 24(4):1550-9. PubMed ID: 18225926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emergent properties of dense DNA phases toward artificial biosystems on a surface.
    Bracha D; Karzbrun E; Daube SS; Bar-Ziv RH
    Acc Chem Res; 2014 Jun; 47(6):1912-21. PubMed ID: 24856257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient and Tunable Three-Dimensional Functionalization of Fully Zwitterionic Antifouling Surface Coatings.
    Lange SC; van Andel E; Smulders MM; Zuilhof H
    Langmuir; 2016 Oct; 32(40):10199-10205. PubMed ID: 27687696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface Density Variation within Cyclic Polymer Brushes Reveals Topology Effects on Their Nanotribological and Biopassive Properties.
    Divandari M; Trachsel L; Yan W; Rosenboom JG; Spencer ND; Zenobi-Wong M; Morgese G; Ramakrishna SN; Benetti EM
    ACS Macro Lett; 2018 Dec; 7(12):1455-1460. PubMed ID: 35651229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.