BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35294082)

  • 1. Bacterial mandelic acid degradation pathway and its application in biotechnology.
    Wang Q; Geng S; Wang L; Wen Z; Sun X; Huang H
    J Appl Microbiol; 2022 Aug; 133(2):273-286. PubMed ID: 35294082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mandelate pathway of Pseudomonas putida: sequence relationships involving mandelate racemase, (S)-mandelate dehydrogenase, and benzoylformate decarboxylase and expression of benzoylformate decarboxylase in Escherichia coli.
    Tsou AY; Ransom SC; Gerlt JA; Buechter DD; Babbitt PC; Kenyon GL
    Biochemistry; 1990 Oct; 29(42):9856-62. PubMed ID: 2271624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mandelate racemase and mandelate dehydrogenase coexpressed recombinant Escherichia coli in the synthesis of benzoylformate.
    Li D; Zeng Z; Yang J; Wang P; Jiang L; Feng J; Yang C
    Biosci Biotechnol Biochem; 2013; 77(6):1236-9. PubMed ID: 23748763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis.
    Tang CD; Ding PJ; Shi HL; Jia YY; Zhou MZ; Yu HL; Xu JH; Yao LG; Kan YC
    J Agric Food Chem; 2019 Mar; 67(10):2946-2953. PubMed ID: 30807132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esters of mandelic acid as substrates for (S)-mandelate dehydrogenase from Pseudomonas putida: implications for the reaction mechanism.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Feb; 43(7):1883-90. PubMed ID: 14967029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a mandelamide hydrolase and an NAD(P)+-dependent benzaldehyde dehydrogenase from Pseudomonas putida ATCC 12633.
    McLeish MJ; Kneen MM; Gopalakrishna KN; Koo CW; Babbitt PC; Gerlt JA; Kenyon GL
    J Bacteriol; 2003 Apr; 185(8):2451-6. PubMed ID: 12670968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of transposon insertion mutants of mandelic acid-utilizing Pseudomonas putida strain A10L.
    Shimao M; Nakamura T; Okuda A; Harayama S
    Biosci Biotechnol Biochem; 1996 Jul; 60(7):1051-5. PubMed ID: 8782397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.
    Durham DR
    J Bacteriol; 1984 Nov; 160(2):778-80. PubMed ID: 6389497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assay for mandelate racemase using high-performance liquid chromatography.
    Bearne SL; St Maurice M; Vaughan MD
    Anal Biochem; 1999 May; 269(2):332-6. PubMed ID: 10222006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the protocatechuate pathway in the metabolism of mandelic acid by Aspergillus niger.
    Jamaluddin M; Rao PV; Vaidyanathan CS
    J Bacteriol; 1970 Mar; 101(3):786-93. PubMed ID: 4392397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. II. Isolation and properties of blocked mutants.
    Hegeman GD
    J Bacteriol; 1966 Mar; 91(3):1155-60. PubMed ID: 5929748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the mandelate pathway in Pseudomonas aeruginosa.
    Rosenberg SL
    J Bacteriol; 1971 Dec; 108(3):1257-69. PubMed ID: 5003176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes.
    Andrews FH; Horton JD; Shin D; Yoon HJ; Logsdon MG; Malik AM; Rogers MP; Kneen MM; Suh SW; McLeish MJ
    Biochim Biophys Acta; 2015 Aug; 1854(8):1001-9. PubMed ID: 25936776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants.
    Hegeman GD
    J Bacteriol; 1966 Mar; 91(3):1161-7. PubMed ID: 5929749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type.
    Hegeman GD
    J Bacteriol; 1966 Mar; 91(3):1140-54. PubMed ID: 5929747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (S)-Mandelate dehydrogenase from Pseudomonas putida: mechanistic studies with alternate substrates and pH and kinetic isotope effects.
    Lehoux IE; Mitra B
    Biochemistry; 1999 May; 38(18):5836-48. PubMed ID: 10231535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymes of the mandelate pathway in Bacterium N.C.I.B. 8250.
    Kennedy SI; Fewson CA
    Biochem J; 1968 Apr; 107(4):497-506. PubMed ID: 5660630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of 4-hydroxymandelic acid in the degradation of mandelic acid by Pseudomonas convexa.
    Bhat SG; Vaidyanathan CS
    J Bacteriol; 1976 Sep; 127(3):1108-18. PubMed ID: 956122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids.
    Fan CW; Xu GC; Ma BD; Bai YP; Zhang J; Xu JH
    J Biotechnol; 2015 Feb; 195():67-71. PubMed ID: 25449542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity.
    Lehoux IE; Mitra B
    Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.