These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35294184)

  • 1. DeLA-Drug: A Deep Learning Algorithm for Automated Design of Druglike Analogues.
    Creanza TM; Lamanna G; Delre P; Contino M; Corriero N; Saviano M; Mangiatordi GF; Ancona N
    J Chem Inf Model; 2022 Mar; 62(6):1411-1424. PubMed ID: 35294184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeLA-DrugSelf: Empowering multi-objective de novo design through SELFIES molecular representation.
    Alberga D; Lamanna G; Graziano G; Delre P; Lomuscio MC; Corriero N; Ligresti A; Siliqi D; Saviano M; Contino M; Stefanachi A; Mangiatordi GF
    Comput Biol Med; 2024 Jun; 175():108486. PubMed ID: 38653065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GENERA: A Combined Genetic/Deep-Learning Algorithm for Multiobjective Target-Oriented De Novo Design.
    Lamanna G; Delre P; Marcou G; Saviano M; Varnek A; Horvath D; Mangiatordi GF
    J Chem Inf Model; 2023 Aug; 63(16):5107-5119. PubMed ID: 37556857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries.
    Bian Y; Xie XQ
    Cells; 2022 Mar; 11(5):. PubMed ID: 35269537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative Recurrent Networks for De Novo Drug Design.
    Gupta A; Müller AT; Huisman BJH; Fuchs JA; Schneider P; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29095571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidelines for Recurrent Neural Network Transfer Learning-Based Molecular Generation of Focused Libraries.
    Amabilino S; Pogány P; Pickett SD; Green DVS
    J Chem Inf Model; 2020 Dec; 60(12):5699-5713. PubMed ID: 32659085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving Chemical Autoencoder Latent Space and Molecular
    Bjerrum EJ; Sattarov B
    Biomolecules; 2018 Oct; 8(4):. PubMed ID: 30380783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators.
    Delre P; Contino M; Alberga D; Saviano M; Corriero N; Mangiatordi GF
    Comput Biol Med; 2023 Sep; 164():107314. PubMed ID: 37572442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The power of deep learning to ligand-based novel drug discovery.
    Baskin II
    Expert Opin Drug Discov; 2020 Jul; 15(7):755-764. PubMed ID: 32228116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug Analogs from Fragment-Based Long Short-Term Memory Generative Neural Networks.
    Awale M; Sirockin F; Stiefl N; Reymond JL
    J Chem Inf Model; 2019 Apr; 59(4):1347-1356. PubMed ID: 30908913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating and screening de novo compounds against given targets using ultrafast deep learning models as core components.
    Zhang H; Saravanan KM; Yang Y; Wei Y; Yi P; Zhang JZH
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35724626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adversarial Threshold Neural Computer for Molecular de Novo Design.
    Putin E; Asadulaev A; Vanhaelen Q; Ivanenkov Y; Aladinskaya AV; Aliper A; Zhavoronkov A
    Mol Pharm; 2018 Oct; 15(10):4386-4397. PubMed ID: 29569445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.
    Liu CH; Korablyov M; Jastrzębski S; Włodarczyk-Pruszyński P; Bengio Y; Segler M
    J Chem Inf Model; 2022 May; 62(10):2293-2300. PubMed ID: 35452226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De Novo Design of Bioactive Small Molecules by Artificial Intelligence.
    Merk D; Friedrich L; Grisoni F; Schneider G
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29319225
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Ballarotto M; Willems S; Stiller T; Nawa F; Marschner JA; Grisoni F; Merk D
    J Med Chem; 2023 Jun; 66(12):8170-8177. PubMed ID: 37256819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepScreening: a deep learning-based screening web server for accelerating drug discovery.
    Liu Z; Du J; Fang J; Yin Y; Xu G; Xie L
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 31608949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones.
    Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based construction of a Drug-Like compound database and its application in virtual screening of HsDHODH inhibitors.
    Xia W; Xiao J; Bian H; Zhang J; Zhang JZH; Zhang H
    Methods; 2024 May; 225():44-51. PubMed ID: 38518843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.