These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 35294199)
61. The Central Hinge Link Truncation of the Antimicrobial Peptide Fowlicidin-3 Enhances Its Cell Selectivity without Antibacterial Activity Loss. Qu P; Gao W; Chen H; Li D; Yang N; Zhu J; Feng X; Liu C; Li Z Antimicrob Agents Chemother; 2016 May; 60(5):2798-806. PubMed ID: 26902768 [TBL] [Abstract][Full Text] [Related]
62. Antimicrobial Peptide-Reduced Gold Nanoclusters with Charge-Reversal Moieties for Bacterial Targeting and Imaging. Pranantyo D; Liu P; Zhong W; Kang ET; Chan-Park MB Biomacromolecules; 2019 Aug; 20(8):2922-2933. PubMed ID: 31305998 [TBL] [Abstract][Full Text] [Related]
63. Pentobra: A Potent Antibiotic with Multiple Layers of Selective Antimicrobial Mechanisms against Propionibacterium Acnes. Schmidt NW; Agak GW; Deshayes S; Yu Y; Blacker A; Champer J; Xian W; Kasko AM; Kim J; Wong GCL J Invest Dermatol; 2015 Jun; 135(6):1581-1589. PubMed ID: 25668237 [TBL] [Abstract][Full Text] [Related]
64. The C-terminal sequences of porcine thrombin are active as antimicrobial peptides. Lv X; Ma Q; Zhu D; Shao C; Lv Y; Shan A Chem Biol Drug Des; 2016 Dec; 88(6):905-914. PubMed ID: 27439393 [TBL] [Abstract][Full Text] [Related]
65. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Chou S; Wang J; Shang L; Akhtar MU; Wang Z; Shi B; Feng X; Shan A Biomater Sci; 2019 May; 7(6):2394-2409. PubMed ID: 30919848 [TBL] [Abstract][Full Text] [Related]
66. Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection. Lou W; Venkataraman S; Zhong G; Ding B; Tan JPK; Xu L; Fan W; Yang YY Acta Biomater; 2018 Sep; 78():78-88. PubMed ID: 30031912 [TBL] [Abstract][Full Text] [Related]
67. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
68. Evolutionary constraints on the acquisition of antimicrobial peptide resistance in bacterial pathogens. Jangir PK; Ogunlana L; MacLean RC Trends Microbiol; 2021 Dec; 29(12):1058-1061. PubMed ID: 33836929 [TBL] [Abstract][Full Text] [Related]
69. Antibiotics-Peptide Conjugates Against Multidrug-resistant Bacterial Pathogens. David AA; Park SE; Parang K; Tiwari RK Curr Top Med Chem; 2018; 18(22):1926-1936. PubMed ID: 30499392 [TBL] [Abstract][Full Text] [Related]
70. In vivo activation of pH-responsive oxidase-like graphitic nanozymes for selective killing of Helicobacter pylori. Zhang L; Zhang L; Deng H; Li H; Tang W; Guan L; Qiu Y; Donovan MJ; Chen Z; Tan W Nat Commun; 2021 Mar; 12(1):2002. PubMed ID: 33790299 [TBL] [Abstract][Full Text] [Related]
71. Porous Microstructured Surfaces with pH-Triggered Antibacterial Properties. Del Campo A; Echeverría C; San Martín M; Cuervo-Rodríguez R; Fernández-García M; Muñoz-Bonilla A Macromol Biosci; 2019 Aug; 19(8):e1900127. PubMed ID: 31268235 [TBL] [Abstract][Full Text] [Related]
72. Effect of a single percutaneous abscess drainage puncture and imipenem therapy, alone or in combination, in treatment of mixed-infection abscesses in mice. Stearne LE; Buijk SL; Mouton JW; Gyssens IC Antimicrob Agents Chemother; 2002 Dec; 46(12):3712-8. PubMed ID: 12435666 [TBL] [Abstract][Full Text] [Related]
73. Beta-lactam enhancement of aminoglycoside activity under conditions of reduced pH and oxygen tension that may exist in infected tissues. Bryant RE; Fox K; Oh G; Morthland VH J Infect Dis; 1992 Apr; 165(4):676-82. PubMed ID: 1552196 [TBL] [Abstract][Full Text] [Related]
74. Biochemical property and in vivo efficacies of novel Val/Arg-rich antimicrobial peptide. Ma QQ; Dong N; Shan AS; Wang L; Hu WN; Sun WY Protein Pept Lett; 2012 Nov; 19(11):1144-8. PubMed ID: 22587781 [TBL] [Abstract][Full Text] [Related]
75. Staphylococcus aureus Uses the GraXRS Regulatory System To Sense and Adapt to the Acidified Phagolysosome in Macrophages. Flannagan RS; Kuiack RC; McGavin MJ; Heinrichs DE mBio; 2018 Jul; 9(4):. PubMed ID: 30018109 [TBL] [Abstract][Full Text] [Related]
76. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560 [TBL] [Abstract][Full Text] [Related]
77. Evaluation of antibiotic effectiveness against Staphylococcus aureus surviving within the bovine mammary gland macrophage. Sanchez MS; Ford CW; Yancey RJ J Antimicrob Chemother; 1988 Jun; 21(6):773-86. PubMed ID: 3410801 [TBL] [Abstract][Full Text] [Related]
78. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110 [TBL] [Abstract][Full Text] [Related]
79. A Novel Polymeric Nanohybrid Antimicrobial Engineered by Antimicrobial Peptide MccJ25 and Chitosan Nanoparticles Exerts Strong Antibacterial and Anti-Inflammatory Activities. Haitao Y; Yifan C; Mingchao S; Shuaijuan H Front Immunol; 2021; 12():811381. PubMed ID: 35126369 [TBL] [Abstract][Full Text] [Related]
80. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]