These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35294220)

  • 1. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching.
    Badri-Spröwitz A; Aghamaleki Sarvestani A; Sitti M; Daley MA
    Sci Robot; 2022 Mar; 7(64):eabg4055. PubMed ID: 35294220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncilla Robot: A Versatile Open-Source Quadruped Research Robot With Compliant Pantograph Legs.
    Spröwitz AT; Tuleu A; Ajallooeian M; Vespignani M; Möckel R; Eckert P; D'Haene M; Degrave J; Nordmann A; Schrauwen B; Steil J; Ijspeert AJ
    Front Robot AI; 2018; 5():67. PubMed ID: 33500946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Series Elastic Behavior of Biarticular Muscle-Tendon Structure in a Robotic Leg.
    Ruppert F; Badri-Spröwitz A
    Front Neurorobot; 2019; 13():64. PubMed ID: 31456682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall-climbing performance of gecko-inspired robot with soft feet and digits enhanced by gravity compensation.
    Wang B; Weng Z; Wang H; Wang S; Wang Z; Dai Z; Jusufi A
    Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38876097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crab-inspired compliant leg design method for adaptive locomotion of a multi-legged robot.
    Zhang J; Liu Q; Zhou J; Song A
    Bioinspir Biomim; 2022 Jan; 17(2):. PubMed ID: 34937001
    [No Abstract]   [Full Text] [Related]  

  • 6. Understanding the Agility of Running Birds: Sensorimotor and Mechanical Factors in Avian Bipedal Locomotion.
    Daley MA
    Integr Comp Biol; 2018 Nov; 58(5):884-893. PubMed ID: 29897448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BigDog-inspired studies in the locomotion of goats and dogs.
    Lee DV; Biewener AA
    Integr Comp Biol; 2011 Jul; 51(1):190-202. PubMed ID: 21659392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait and locomotion analysis of a soft-hybrid multi-legged modular miniature robot.
    Mahkam N; Özcan O
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34492650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic compliance of robot legs improves recovery from swing-phase collisions.
    Chang H; Chang J; Clifton G; Gravish N
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34130262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency.
    Haberland M; Kim S
    Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrohydraulic musculoskeletal robotic leg for agile, adaptive, yet energy-efficient locomotion.
    Buchner TJK; Fukushima T; Kazemipour A; Gravert SD; Prairie M; Romanescu P; Arm P; Zhang Y; Wang X; Zhang SL; Walter J; Keplinger C; Katzschmann RK
    Nat Commun; 2024 Sep; 15(1):7634. PubMed ID: 39251597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion.
    Goldsmith CA; Haustein M; Büschges A; Szczecinski NS
    Bioinspir Biomim; 2024 Oct; 19(6):. PubMed ID: 39332442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk pitch oscillations for energy trade-offs in bipedal running birds and robots.
    Drama Ö; Badri-Spröwitz A
    Bioinspir Biomim; 2020 Mar; 15(3):036013. PubMed ID: 32052793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of compliant mechanics and motor control in hopping - from human to robot.
    Mohammadi Nejad Rashty A; Sharbafi MA; Mohseni O; Seyfarth A
    Sci Rep; 2024 Mar; 14(1):6820. PubMed ID: 38514699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing and designing a leg shape to increase robustness of a running robot on rough terrain.
    Gaathon A; Degani A
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36270611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the analysis and control of a bipedal legged locomotion model via partial feedback linearization.
    Hamzaçebi H; Uyanik I; Morgül Ö
    Bioinspir Biomim; 2024 Jul; 19(5):. PubMed ID: 38936396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new biarticular actuator design facilitates control of leg function in BioBiped3.
    Sharbafi MA; Rode C; Kurowski S; Scholz D; Möckel R; Radkhah K; Zhao G; Rashty AM; Stryk Ov; Seyfarth A
    Bioinspir Biomim; 2016 Jul; 11(4):046003. PubMed ID: 27367459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.