These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35294220)

  • 41. Rotary and radial forcing effects on center-of-mass locomotion dynamics.
    Shen ZH; Larson PL; Seipel JE
    Bioinspir Biomim; 2014 Sep; 9(3):036020. PubMed ID: 25162748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Torque action of two-joint muscles in the swing period of stiff-legged gait: a forward dynamic model analysis.
    Riley PO; Kerrigan DC
    J Biomech; 1998 Sep; 31(9):835-40. PubMed ID: 9802784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.
    Skidmore J; Artemiadis P
    J Neuroeng Rehabil; 2016 Mar; 13():32. PubMed ID: 27004528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Running birds reveal secrets for legged robot design.
    Rubenson J; Sawicki GS
    Sci Robot; 2022 Mar; 7(64):eabo2147. PubMed ID: 35294221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Minimizing the cost of locomotion with inclined trunk predicts crouched leg kinematics of small birds at realistic levels of elastic recoil.
    Rode C; Sutedja Y; Kilbourne BM; Blickhan R; Andrada E
    J Exp Biol; 2016 Feb; 219(Pt 4):485-90. PubMed ID: 26643087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A robotic leg inspired from an insect leg.
    Tran-Ngoc PT; Lim LZ; Gan JH; Wang H; Vo-Doan TT; Sato H
    Bioinspir Biomim; 2022 Aug; 17(5):. PubMed ID: 35700723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robust and efficient walking with spring-like legs.
    Rummel J; Blum Y; Seyfarth A
    Bioinspir Biomim; 2010 Dec; 5(4):046004. PubMed ID: 21079285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Human-like hopping in machines : Feedback- versus feed-forward-controlled motions.
    Oehlke J; Beckerle P; Seyfarth A; Sharbafi MA
    Biol Cybern; 2019 Jun; 113(3):227-238. PubMed ID: 30370464
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stance controlled knee flexion improves stimulation driven walking after spinal cord injury.
    Bulea TC; Kobetic R; Audu ML; Triolo RJ
    J Neuroeng Rehabil; 2013 Jul; 10():68. PubMed ID: 23826711
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development, Analysis, and Control of Series Elastic Actuator-Driven Robot Leg.
    Lee C; Oh S
    Front Neurorobot; 2019; 13():17. PubMed ID: 31133840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Quadruped Robot Exhibiting Spontaneous Gait Transitions from Walking to Trotting to Galloping.
    Owaki D; Ishiguro A
    Sci Rep; 2017 Mar; 7(1):277. PubMed ID: 28325917
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Overview on Principles for Energy Efficient Robot Locomotion.
    Kashiri N; Abate A; Abram SJ; Albu-Schaffer A; Clary PJ; Daley M; Faraji S; Furnemont R; Garabini M; Geyer H; Grabowski AM; Hurst J; Malzahn J; Mathijssen G; Remy D; Roozing W; Shahbazi M; Simha SN; Song JB; Smit-Anseeuw N; Stramigioli S; Vanderborght B; Yesilevskiy Y; Tsagarakis N
    Front Robot AI; 2018; 5():129. PubMed ID: 33501007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A springy pendulum could describe the swing leg kinetics of human walking.
    Song H; Park H; Park S
    J Biomech; 2016 Jun; 49(9):1504-1509. PubMed ID: 27020749
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Designing minimal and scalable insect-inspired multi-locomotion millirobots.
    Zhakypov Z; Mori K; Hosoda K; Paik J
    Nature; 2019 Jul; 571(7765):381-386. PubMed ID: 31292552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Leg Extension Angle on Knee Flexion Angle during Swing Phase in Post-Stroke Gait.
    Matsuzawa Y; Miyazaki T; Takeshita Y; Higashi N; Hayashi H; Araki S; Nakatsuji S; Fukunaga S; Kawada M; Kiyama R
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833440
    [No Abstract]   [Full Text] [Related]  

  • 60. Viscoelastic legs for open-loop control of gram-scale robots.
    St Pierre R; Gao W; Clark JE; Bergbreiter S
    Bioinspir Biomim; 2020 Jul; 15(5):055005. PubMed ID: 32580172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.