These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Sequencing Using a Two-Step Strategy Reveals High Genetic Diversity in the S Gene of SARS-CoV-2 after a High-Transmission Period in Tunis, Tunisia. Fares W; Ghedira K; Gdoura M; Chouikha A; Haddad-Boubaker S; Khedhiri M; Ayouni K; Lamari A; Touzi H; Hammemi W; Medeb Z; Sadraoui A; Hogga N; Ben Alaya N; Triki H Microbiol Spectr; 2021 Dec; 9(3):e0063921. PubMed ID: 34756072 [TBL] [Abstract][Full Text] [Related]
6. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. Tragni V; Preziusi F; Laera L; Onofrio A; Mercurio I; Todisco S; Volpicella M; De Grassi A; Pierri CL EPMA J; 2022 Mar; 13(1):149-175. PubMed ID: 35013687 [TBL] [Abstract][Full Text] [Related]
7. Development of an efficient Sanger sequencing-based assay for detecting SARS-CoV-2 spike mutations. Lim HJ; Park MY; Jung HS; Kwon Y; Kim I; Kim DK; Yu N; Sung N; Lee SH; Park JE; Yang YJ PLoS One; 2021; 16(12):e0260850. PubMed ID: 34905589 [TBL] [Abstract][Full Text] [Related]
8. A short plus long-amplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. Arana C; Liang C; Brock M; Zhang B; Zhou J; Chen L; Cantarel B; SoRelle J; Hooper LV; Raj P PLoS One; 2022; 17(1):e0261014. PubMed ID: 35025877 [TBL] [Abstract][Full Text] [Related]
9. Despite low viral titer in saliva samples, Sanger-based SARS-CoV-2 spike gene sequencing is highly applicable for the variant identification. Ko K; Takahashi K; Ito N; Sugiyama A; Nagashima S; Miwata K; Kitahara Y; Okimoto M; Ouoba S; Akuffo GA; E B; Akita T; Takafuta T; Tanaka J BMC Med Genomics; 2023 Aug; 16(1):199. PubMed ID: 37620887 [TBL] [Abstract][Full Text] [Related]
10. SARS-CoV-2 Variants of Concern: Presumptive Identification via Sanger Sequencing Analysis of the Receptor Binding Domain (RBD) Region of the Rodrigues GM; Volpato FCZ; Wink PL; Paiva RM; Barth AL; de-Paris F Diagnostics (Basel); 2023 Mar; 13(7):. PubMed ID: 37046474 [TBL] [Abstract][Full Text] [Related]
11. A comparison of five Illumina, Ion Torrent, and nanopore sequencing technology-based approaches for whole genome sequencing of SARS-CoV-2. Carbo EC; Mourik K; Boers SA; Munnink BO; Nieuwenhuijse D; Jonges M; Welkers MRA; Matamoros S; van Harinxma Thoe Slooten J; Kraakman MEM; Karelioti E; van der Meer D; Veldkamp KE; Kroes ACM; Sidorov I; de Vries JJC Eur J Clin Microbiol Infect Dis; 2023 Jun; 42(6):701-713. PubMed ID: 37017810 [TBL] [Abstract][Full Text] [Related]
12. Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. Barton MI; MacGowan SA; Kutuzov MA; Dushek O; Barton GJ; van der Merwe PA Elife; 2021 Aug; 10():. PubMed ID: 34435953 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the ARTIC Version 3 and Version 4 SARS-CoV-2 Primers and Their Impact on the Detection of the G142D Amino Acid Substitution in the Spike Protein. Davis JJ; Long SW; Christensen PA; Olsen RJ; Olson R; Shukla M; Subedi S; Stevens R; Musser JM Microbiol Spectr; 2021 Dec; 9(3):e0180321. PubMed ID: 34878296 [TBL] [Abstract][Full Text] [Related]
14. RT-qPCR Assays for Rapid Detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 Mutations: A Screening Strategy to Identify Variants With Clinical Impact. Vega-Magaña N; Sánchez-Sánchez R; Hernández-Bello J; Venancio-Landeros AA; Peña-Rodríguez M; Vega-Zepeda RA; Galindo-Ornelas B; Díaz-Sánchez M; García-Chagollán M; Macedo-Ojeda G; García-González OP; Muñoz-Valle JF Front Cell Infect Microbiol; 2021; 11():672562. PubMed ID: 34123874 [TBL] [Abstract][Full Text] [Related]
15. A Routine Sanger Sequencing Target Specific Mutation Assay for SARS-CoV-2 Variants of Concern and Interest. Lee SH Viruses; 2021 Nov; 13(12):. PubMed ID: 34960655 [TBL] [Abstract][Full Text] [Related]
16. Identification of SARS-CoV-2 Variants of Concern Using Amplicon Next-Generation Sequencing. Nasereddin A; Golan Berman H; Wolf DG; Oiknine-Djian E; Adar S Microbiol Spectr; 2022 Aug; 10(4):e0073622. PubMed ID: 35758686 [TBL] [Abstract][Full Text] [Related]
17. High-Integrity Sequencing of Spike Gene for SARS-CoV-2 Variant Determination. Liao YC; Chen FJ; Chuang MC; Wu HC; Ji WC; Yu GY; Huang TS Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328676 [TBL] [Abstract][Full Text] [Related]
18. Receptor-Binding-Motif-Targeted Sanger Sequencing: a Quick and Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 Variants. Chaki SP; Kahl-McDonagh MM; Neuman BW; Zuelke KA Microbiol Spectr; 2022 Jun; 10(3):e0066522. PubMed ID: 35638906 [TBL] [Abstract][Full Text] [Related]
19. ClinQC: a tool for quality control and cleaning of Sanger and NGS data in clinical research. Pandey RV; Pabinger S; Kriegner A; Weinhäusel A BMC Bioinformatics; 2016 Feb; 17():56. PubMed ID: 26830926 [TBL] [Abstract][Full Text] [Related]
20. Two-Period Study Results from a Large Italian Hospital Laboratory Attesting SARS-CoV-2 Variant PCR Assay Evolution. Liotti FM; De Maio F; Ippoliti C; Santarelli G; Monzo FR; Sali M; Santangelo R; Ceccherini-Silberstein F; Sanguinetti M; Posteraro B Microbiol Spectr; 2022 Dec; 10(6):e0292222. PubMed ID: 36409091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]