BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35294357)

  • 1. Online Spatio-Temporal Learning in Deep Neural Networks.
    Bohnstingl T; Wozniak S; Pantazi A; Eleftheriou E
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8894-8908. PubMed ID: 35294357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing SNNs and RNNs on neuromorphic vision datasets: Similarities and differences.
    He W; Wu Y; Deng L; Li G; Wang H; Tian Y; Ding W; Wang W; Xie Y
    Neural Netw; 2020 Dec; 132():108-120. PubMed ID: 32866745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Braille letter reading: A benchmark for spatio-temporal pattern recognition on neuromorphic hardware.
    Müller-Cleve SF; Fra V; Khacef L; Pequeño-Zurro A; Klepatsch D; Forno E; Ivanovich DG; Rastogi S; Urgese G; Zenke F; Bartolozzi C
    Front Neurosci; 2022; 16():951164. PubMed ID: 36440280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EXODUS: Stable and efficient training of spiking neural networks.
    Bauer FC; Lenz G; Haghighatshoar S; Sheik S
    Front Neurosci; 2023; 17():1110444. PubMed ID: 36845419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient training of spiking neural networks with temporally-truncated local backpropagation through time.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2023; 17():1047008. PubMed ID: 37090791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks.
    Wu Y; Deng L; Li G; Zhu J; Shi L
    Front Neurosci; 2018; 12():331. PubMed ID: 29875621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Tandem Learning Rule for Effective Training and Rapid Inference of Deep Spiking Neural Networks.
    Wu J; Chua Y; Zhang M; Li G; Li H; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):446-460. PubMed ID: 34288879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE).
    Kaiser J; Mostafa H; Neftci E
    Front Neurosci; 2020; 14():424. PubMed ID: 32477050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous recurrent spiking neural network for spatio-temporal classification.
    Chakraborty B; Mukhopadhyay S
    Front Neurosci; 2023; 17():994517. PubMed ID: 36793542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks.
    Yu C; Gu Z; Li D; Wang G; Wang A; Li E
    Front Neurosci; 2022; 16():1079357. PubMed ID: 36620452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LIAF-Net: Leaky Integrate and Analog Fire Network for Lightweight and Efficient Spatiotemporal Information Processing.
    Wu Z; Zhang H; Lin Y; Li G; Wang M; Tang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6249-6262. PubMed ID: 33979292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HybridSNN: Combining Bio-Machine Strengths by Boosting Adaptive Spiking Neural Networks.
    Shen J; Zhao Y; Liu JK; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5841-5855. PubMed ID: 34890341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Few-Shot Learning in Spiking Neural Networks by Multi-Timescale Optimization.
    Jiang R; Zhang J; Yan R; Tang H
    Neural Comput; 2021 Aug; 33(9):2439-2472. PubMed ID: 34280263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring Adversarial Attack in Spiking Neural Networks With Spike-Compatible Gradient.
    Liang L; Hu X; Deng L; Wu Y; Li G; Ding Y; Li P; Xie Y
    IEEE Trans Neural Netw Learn Syst; 2023 May; 34(5):2569-2583. PubMed ID: 34473634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. E-prop on SpiNNaker 2: Exploring online learning in spiking RNNs on neuromorphic hardware.
    Rostami A; Vogginger B; Yan Y; Mayr CG
    Front Neurosci; 2022; 16():1018006. PubMed ID: 36518534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.