These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35294934)

  • 1. Effect of hole doping on the 120 degree order in the triangular lattice Hubbard model: a Hartree-Fock revisit.
    Qin M
    J Phys Condens Matter; 2022 Apr; 34(23):. PubMed ID: 35294934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frustration- and doping-induced magnetism in a Fermi-Hubbard simulator.
    Xu M; Kendrick LH; Kale A; Gang Y; Ji G; Scalettar RT; Lebrat M; Greiner M
    Nature; 2023 Aug; 620(7976):971-976. PubMed ID: 37532942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transitions of the ionic Hubbard model on the honeycomb lattice.
    Lin HF; Liu HD; Tao HS; Liu WM
    Sci Rep; 2015 May; 5():9810. PubMed ID: 25961417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model.
    Xu J; Chang CC; Walter EJ; Zhang S
    J Phys Condens Matter; 2011 Dec; 23(50):505601. PubMed ID: 22127010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiral magnetism in the single-band Hubbard model: the Hartree-Fock and slave-boson approaches.
    Igoshev PA; Timirgazin MA; Gilmutdinov VF; Arzhnikov AK; Irkhin VY
    J Phys Condens Matter; 2015 Nov; 27(44):446002. PubMed ID: 26465091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of Hubbard model physics in WSe
    Tang Y; Li L; Li T; Xu Y; Liu S; Barmak K; Watanabe K; Taniguchi T; MacDonald AH; Shan J; Mak KF
    Nature; 2020 Mar; 579(7799):353-358. PubMed ID: 32188950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic states, correlation effects and metal-insulator transition in FCC lattice.
    Timirgazin MA; Igoshev PA; Arzhnikov AK; Yu Irkhin V
    J Phys Condens Matter; 2016 Dec; 28(50):505601. PubMed ID: 27779131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective.
    Mukherjee A; Lal S
    J Phys Condens Matter; 2022 Apr; 34(27):. PubMed ID: 35413696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of the antiferromagnetic state in the electron doped iridates.
    Bhowal S; Kurdestany JM; Satpathy S
    J Phys Condens Matter; 2018 Jun; 30(23):235601. PubMed ID: 29701606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mott transition, magnetic and orbital orders in the ground state of the two-band Hubbard model using variational slave-spin mean field formalism.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Nov; 34(5):. PubMed ID: 34710854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lieb and hole-doped ferrimagnetism, spiral, resonating valence-bond states, and phase separation in large-U AB
    Martinez Alvarez VM; Coutinho-Filho MD
    J Phys Condens Matter; 2019 May; 31(19):195603. PubMed ID: 30763920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions of the Kane-Mele-Hubbard model with a long-range hopping.
    Du T; Li YX; Lu HL; Zhang H
    J Phys Condens Matter; 2018 Nov; 30(47):475601. PubMed ID: 30378568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly imaging spin polarons in a kinetically frustrated Hubbard system.
    Prichard ML; Spar BM; Morera I; Demler E; Yan ZZ; Bakr WS
    Nature; 2024 May; 629(8011):323-328. PubMed ID: 38720039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metal-insulator transition in the half-filled extended Hubbard model on a triangular lattice.
    Gao J; Wang J
    J Phys Condens Matter; 2009 Dec; 21(48):485702. PubMed ID: 21832529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermionic Symmetry-Protected Topological Phase in a Two-Dimensional Hubbard Model.
    Chen CC; Muechler L; Car R; Neupert T; Maciejko J
    Phys Rev Lett; 2016 Aug; 117(9):096405. PubMed ID: 27610869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo study of an unconventional superconducting phase in iridium oxide J(eff)=1/2 Mott insulators induced by carrier doping.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2013 Jan; 110(2):027002. PubMed ID: 23383933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground state of a three-band Hubbard model with Hund's coupling: Janus-faced behavior in presence of magnetic order.
    Maurya AK; Sarder MTH; Medhi A
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34298529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-Spin Terms and the Origin of the Chiral Spin Liquid in Mott Insulators on the Triangular Lattice.
    Cookmeyer T; Motruk J; Moore JE
    Phys Rev Lett; 2021 Aug; 127(8):087201. PubMed ID: 34477420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kondo metal and ferrimagnetic insulator on the triangular kagome lattice.
    Chen YH; Tao HS; Yao DX; Liu WM
    Phys Rev Lett; 2012 Jun; 108(24):246402. PubMed ID: 23004298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition among Superconducting, Antiferromagnetic, and Charge Orders with Intervention by Phase Separation in the 2D Holstein-Hubbard Model.
    Ohgoe T; Imada M
    Phys Rev Lett; 2017 Nov; 119(19):197001. PubMed ID: 29219494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.