These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 35294935)

  • 1. Brain tumor magnetic resonance image segmentation by a multiscale contextual attention module combined with a deep residual UNet (MCA-ResUNet).
    Cao T; Wang G; Ren L; Li Y; Wang H
    Phys Med Biol; 2022 Apr; 67(9):. PubMed ID: 35294935
    [No Abstract]   [Full Text] [Related]  

  • 2. [Fully Automatic Glioma Segmentation Algorithm of Magnetic Resonance Imaging Based on 3D-UNet With More Global Contextual Feature Extraction: An Improvement on Insufficient Extraction of Global Features].
    Tian H; Wang Y; Ji Y; Rahman MM
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Mar; 55(2):447-454. PubMed ID: 38645864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFP-ResUNet:Convolutional Neural Network with a Dilated Convolutional Feature Pyramid for Multimodal Brain Tumor Segmentation.
    Wang J; Gao J; Ren J; Luan Z; Yu Z; Zhao Y; Zhao Y
    Comput Methods Programs Biomed; 2021 Sep; 208():106208. PubMed ID: 34174763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GMAlignNet: multi-scale lightweight brain tumor image segmentation with enhanced semantic information consistency.
    Song J; Lu X; Gu Y
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38657628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep convolutional neural network for the automatic segmentation of glioblastoma brain tumor: Joint spatial pyramid module and attention mechanism network.
    Liu H; Huang J; Li Q; Guan X; Tseng M
    Artif Intell Med; 2024 Feb; 148():102776. PubMed ID: 38325925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eres-UNet++: Liver CT image segmentation based on high-efficiency channel attention and Res-UNet+.
    Li J; Liu K; Hu Y; Zhang H; Heidari AA; Chen H; Zhang W; Algarni AD; Elmannai H
    Comput Biol Med; 2023 May; 158():106501. PubMed ID: 36635120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor.
    He X; Xu W; Yang J; Mao J; Chen S; Wang Z
    Front Neurosci; 2021; 15():782968. PubMed ID: 34899175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation.
    Zhang J; Lv X; Sun Q; Zhang Q; Wei X; Liu B
    Curr Med Imaging; 2020; 16(6):720-728. PubMed ID: 32723244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADR-Net: Context extraction network based on M-Net for medical image segmentation.
    Ji L; Jiang X; Gao Y; Fang Z; Cai Q; Wei Z
    Med Phys; 2020 Sep; 47(9):4254-4264. PubMed ID: 32602963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAAGR2-Net: A brain tumor segmentation network using parallel processing of multiple spatial frames.
    Rehman MU; Ryu J; Nizami IF; Chong KT
    Comput Biol Med; 2023 Jan; 152():106426. PubMed ID: 36565485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation.
    Chen X; Peng Y; Guo Y; Sun J; Li D; Cui J
    Med Biol Eng Comput; 2022 Dec; 60(12):3377-3395. PubMed ID: 36190611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An iterative multi-path fully convolutional neural network for automatic cardiac segmentation in cine MR images.
    Ma Z; Wu X; Wang X; Song Q; Yin Y; Cao K; Wang Y; Zhou J
    Med Phys; 2019 Dec; 46(12):5652-5665. PubMed ID: 31605627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residual based attention-Unet combing DAC and RMP modules for automatic liver tumor segmentation in CT.
    Bi R; Ji C; Yang Z; Qiao M; Lv P; Wang H
    Math Biosci Eng; 2022 Mar; 19(5):4703-4718. PubMed ID: 35430836
    [No Abstract]   [Full Text] [Related]  

  • 14. RSU-Net: U-net based on residual and self-attention mechanism in the segmentation of cardiac magnetic resonance images.
    Li YZ; Wang Y; Huang YH; Xiang P; Liu WX; Lai QQ; Gao YY; Xu MS; Guo YF
    Comput Methods Programs Biomed; 2023 Apr; 231():107437. PubMed ID: 36863157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of spine x-ray images based on multiscale feature enhancement network.
    Du W; Liu Z; Fei H; Yu J; Duan X; Liao W; Ji L
    Med Phys; 2024 Oct; 51(10):7282-7294. PubMed ID: 38944886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRF-IUNet: A Multiresolution Fusion Brain Tumor Segmentation Network Based on Improved Inception U-Net.
    Jiang Y; Ye M; Wang P; Huang D; Lu X
    Comput Math Methods Med; 2022; 2022():6305748. PubMed ID: 35966244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid dilation and attention residual U-Net for medical image segmentation.
    Wang Z; Zou Y; Liu PX
    Comput Biol Med; 2021 Jul; 134():104449. PubMed ID: 33993015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
    Sun J; Chen W; Peng S; Liu B
    J Med Syst; 2019 Jun; 43(7):221. PubMed ID: 31177346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CMAF-Net: a cross-modal attention fusion-based deep neural network for incomplete multi-modal brain tumor segmentation.
    Sun K; Ding J; Li Q; Chen W; Zhang H; Sun J; Jiao Z; Ni X
    Quant Imaging Med Surg; 2024 Jul; 14(7):4579-4604. PubMed ID: 39022265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.