These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 35294936)

  • 1. Natural ore molybdenite as a high-capacity and cheap anode material for advanced lithium-ion capacitors.
    Li L; Wang H; Liang T; Cao JM; Yan C; Wu XL
    Nanotechnology; 2022 Apr; 33(25):. PubMed ID: 35294936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Performance Lithium-Ion Hybrid Capacitors Employing Fe
    Zhang S; Li C; Zhang X; Sun X; Wang K; Ma Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17136-17144. PubMed ID: 28474525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.
    Sun F; Gao J; Zhu Y; Pi X; Wang L; Liu X; Qin Y
    Sci Rep; 2017 Feb; 7():40990. PubMed ID: 28155853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MoS
    Wang C; Zhan C; Ren X; Lv R; Shen W; Kang F; Huang ZH
    RSC Adv; 2019 Dec; 9(72):42316-42323. PubMed ID: 35542861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defect-rich and N-doped hard carbon as a sustainable anode for high-energy lithium-ion capacitors.
    Jiang J; Zhang Y; Li Z; An Y; Zhu Q; Xu Y; Zang S; Dou H; Zhang X
    J Colloid Interface Sci; 2020 May; 567():75-83. PubMed ID: 32036116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review.
    Duan Y; Li C; Ye Z; Li H; Yang Y; Sui D; Lu Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na
    Lu R; Ren X; Wang C; Zhan C; Nan D; Lv R; Shen W; Kang F; Huang ZH
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Investigation of Natural Ore Molybdenite (MoS
    Li S; Tang H; Ge P; Jiang F; Zhou J; Zhang C; Hou H; Sun W; Ji X
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6378-6389. PubMed ID: 29376632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-reinforced Ni
    Deng XG; Fan LQ; Fu XY; Tang T; Lin SH; Chen L; Yu FD; Huang YF; Huang ML; Wu JH
    J Colloid Interface Sci; 2024 May; 661():237-248. PubMed ID: 38301462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realizing high-performance and low-cost lithium-ion capacitor by regulating kinetic matching between ternary nickel cobalt phosphate microspheres anode with ultralong-life and super-rate performance and watermelon peel biomass-derived carbon cathode.
    Li FF; Gao JF; He ZH; Kong LB
    J Colloid Interface Sci; 2021 Sep; 598():283-301. PubMed ID: 33901853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size-Tunable Natural Mineral-Molybdenite for Lithium-Ion Batteries Toward: Enhanced Storage Capacity and Quicken Ions Transferring.
    Jiang F; Li S; Ge P; Tang H; Khoso SA; Zhang C; Yang Y; Hou H; Hu Y; Sun W; Ji X
    Front Chem; 2018; 6():389. PubMed ID: 30211157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes.
    Yin H; Tang J; Zhang K; Lin S; Xu G; Qin LC
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen-Doped Porous Carbon Derived from Coal for High-Performance Dual-Carbon Lithium-Ion Capacitors.
    Jiang J; Shen Q; Chen Z; Wang S
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical architecture of two-dimensional Ti
    Wu W; Zhao C; Liu H; Liu T; Wang L; Zhu J
    J Colloid Interface Sci; 2022 Oct; 623():216-225. PubMed ID: 35576651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-in-All: Dead Lithium-ion battery to active Lithium-ion Capacitor.
    Manohar A; Viswanathan A; Yun-Sung L; Aravindan V
    ChemSusChem; 2024 Jul; ():e202400449. PubMed ID: 39041945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Li-Ion and Na-Ion Capacitors Based on a Spinel Li
    Akshay M; Jyothilakshmi S; Lee YS; Aravindan V
    Small; 2024 Apr; 20(15):e2307248. PubMed ID: 37994396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust and Fast Lithium Storage Enabled by Polypyrrole-Coated Nitrogen and Phosphorus Co-Doped Hollow Carbon Nanospheres for Lithium-Ion Capacitors.
    Zhang M; Zheng X; Mu J; Liu P; Yuan W; Li S; Wang X; Fang H; Liu H; Xing T; Hu H; Wu M
    Front Chem; 2021; 9():760473. PubMed ID: 34631673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Class of High-Energy, High-Power Capacitive Devices Enabled by Stabilized Lithium Metal Anodes.
    Shaibani M; Abedin MJ; Sharifzadeh Mirshekarloo M; Griffith JC; Singh R; Aitchison P; Hill MR; Majumder M
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37454-37466. PubMed ID: 37506322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudocapacitive Characteristics of Low-Carbon Silicon Oxycarbide for Lithium-Ion Capacitors.
    Halim M; Liu G; Ardhi REA; Hudaya C; Wijaya O; Lee SH; Kim AY; Lee JK
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20566-20576. PubMed ID: 28557417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binder-free boron-doped Si nanowires toward the enhancement of lithium-ion capacitor.
    Li M; Song S; Li Y; Jevasuwan W; Fukata N; Bae J
    Nanotechnology; 2023 Jun; 34(35):. PubMed ID: 37207636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.