These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35295099)

  • 1. Adverse Outcome Pathway Development for Assessment of Lung Carcinogenicity by Nanoparticles.
    Nymark P; Karlsson HL; Halappanavar S; Vogel U
    Front Toxicol; 2021; 3():653386. PubMed ID: 35295099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a Toxicology Forum state-of-the-science workshop.
    Felter SP; Bhat VS; Botham PA; Bussard DA; Casey W; Hayes AW; Hilton GM; Magurany KA; Sauer UG; Ohanian EV
    Crit Rev Toxicol; 2021 Sep; 51(8):653-694. PubMed ID: 35239444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale.
    Halappanavar S; van den Brule S; Nymark P; Gaté L; Seidel C; Valentino S; Zhernovkov V; Høgh Danielsen P; De Vizcaya A; Wolff H; Stöger T; Boyadziev A; Poulsen SS; Sørli JB; Vogel U
    Part Fibre Toxicol; 2020 May; 17(1):16. PubMed ID: 32450889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring a mechanism-based approach for the identification of endocrine disruptors using Adverse Outcome Pathways (AOPs) and New Approach Methodologies (NAMs) : A perfluorooctane sulfonic acid case study.
    Wiklund L; Pípal M; Weiss J; Beronius A
    Toxicology; 2024 May; 504():153794. PubMed ID: 38580097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary glycation compounds - implications for human health.
    Hellwig M; Diel P; Eisenbrand G; Grune T; Guth S; Henle T; Humpf HU; Joost HG; Marko D; Raupbach J; Roth A; Vieths S; Mally A
    Crit Rev Toxicol; 2024 Sep; 54(8):485-617. PubMed ID: 39150724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer.
    Stainforth R; Schuemann J; McNamara AL; Wilkins RC; Chauhan V
    Int J Radiat Biol; 2021; 97(1):85-101. PubMed ID: 32909875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing an adverse outcome pathway framework for weight-of-evidence assessment with application to the ICH S1B guidance addendum.
    Stalford SA; Cayley AN; de Oliveira AAF
    Regul Toxicol Pharmacol; 2021 Dec; 127():105071. PubMed ID: 34737134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes.
    Labib S; Williams A; Yauk CL; Nikota JK; Wallin H; Vogel U; Halappanavar S
    Part Fibre Toxicol; 2016 Mar; 13():15. PubMed ID: 26979667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an adverse outcome pathway framework for arsenic-induced lung cancer using a network-based approach.
    Cheng C; Fan B; Yang Y; Wang P; Wu M; Xia H; Syed BM; Wu H; Liu Q
    Ecotoxicol Environ Saf; 2024 Sep; 283():116809. PubMed ID: 39083875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations.
    Bajard L; Adamovsky O; Audouze K; Baken K; Barouki R; Beltman JB; Beronius A; Bonefeld-Jørgensen EC; Cano-Sancho G; de Baat ML; Di Tillio F; Fernández MF; FitzGerald RE; Gundacker C; Hernández AF; Hilscherova K; Karakitsios S; Kuchovska E; Long M; Luijten M; Majid S; Marx-Stoelting P; Mustieles V; Negi CK; Sarigiannis D; Scholz S; Sovadinova I; Stierum R; Tanabe S; Tollefsen KE; van den Brand AD; Vogs C; Wielsøe M; Wittwehr C; Blaha L
    Environ Res; 2023 Jan; 217():114650. PubMed ID: 36309218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop.
    Kirkland D; Pfuhler S; Tweats D; Aardema M; Corvi R; Darroudi F; Elhajouji A; Glatt H; Hastwell P; Hayashi M; Kasper P; Kirchner S; Lynch A; Marzin D; Maurici D; Meunier JR; Müller L; Nohynek G; Parry J; Parry E; Thybaud V; Tice R; van Benthem J; Vanparys P; White P
    Mutat Res; 2007 Mar; 628(1):31-55. PubMed ID: 17293159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Approach Methodologies for the Endocrine Activity Toolbox: Environmental Assessment for Fish and Amphibians.
    Mitchell CA; Burden N; Bonnell M; Hecker M; Hutchinson TH; Jagla M; LaLone CA; Lagadic L; Lynn SG; Shore B; Song Y; Vliet SM; Wheeler JR; Embry MR
    Environ Toxicol Chem; 2023 Apr; 42(4):757-777. PubMed ID: 36789969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative weight-of-evidence method for confidence assessment of adverse outcome pathway networks: A case study on chemical-induced liver steatosis.
    Verhoeven A; van Ertvelde J; Boeckmans J; Gatzios A; Jover R; Lindeman B; Lopez-Soop G; Rodrigues RM; Rapisarda A; Sanz-Serrano J; Stinckens M; Sepehri S; Teunis M; Vinken M; Jiang J; Vanhaecke T
    Toxicology; 2024 Jun; 505():153814. PubMed ID: 38677583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a systematic use of effect biomarkers in population and occupational biomonitoring.
    Zare Jeddi M; Hopf NB; Viegas S; Price AB; Paini A; van Thriel C; Benfenati E; Ndaw S; Bessems J; Behnisch PA; Leng G; Duca RC; Verhagen H; Cubadda F; Brennan L; Ali I; David A; Mustieles V; Fernandez MF; Louro H; Pasanen-Kase R
    Environ Int; 2021 Jan; 146():106257. PubMed ID: 33395925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a network of carcinogenicity adverse outcome pathways and its employment as an evidence framework for safety assessment.
    Cayley AN; Foster RS; Hill E; Kane S; Kocks G; Myden A; Newman D; Stalford SA; Vessey JD; Zarei R; De Oliveira AAF
    ALTEX; 2023; 40(1):34–52. PubMed ID: 35575642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adverse Outcome Pathway 'Footprinting': A Novel Approach to the Integration of 21st Century Toxicology Information into Chemical Mixtures Risk Assessment.
    Lambert JC
    Toxics; 2022 Dec; 11(1):. PubMed ID: 36668763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A case example of a radiation-relevant adverse outcome pathway to lung cancer.
    Chauhan V; Sherman S; Said Z; Yauk CL; Stainforth R
    Int J Radiat Biol; 2021; 97(1):68-84. PubMed ID: 31846388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A strategy towards the generation of testable adverse outcome pathways for nanomaterials.
    Murugadoss S; Vinković Vrček I; Pem B; Jagiello K; Judzinska B; Sosnowska A; Martens M; Willighagen EL; Puzyn T; Dusinska M; Cimpan MR; Fessard V; Hoet PH
    ALTEX; 2021; 38(4):580-594. PubMed ID: 34008034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Novel AOP for Cyp2F2-Mediated Lung Cancer in Mice.
    Hill T; Conolly RB
    Toxicol Sci; 2019 Nov; 172(1):1-10. PubMed ID: 31407013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints.
    Halappanavar S; Nymark P; Krug HF; Clift MJD; Rothen-Rutishauser B; Vogel U
    Small; 2021 Apr; 17(15):e2007628. PubMed ID: 33559363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.