These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35295407)

  • 1. Statistical approaches to temporal and spatial autocorrelation in resting-state functional connectivity in mice measured with optical intrinsic signal imaging.
    White BR; Chan C; Vandekar S; Shinohara RT
    Neurophotonics; 2022 Oct; 9(4):041405. PubMed ID: 35295407
    [No Abstract]   [Full Text] [Related]  

  • 2. Controlling the familywise error rate in widefield optical neuroimaging of functional connectivity in mice.
    White BR; Chan C; Adepoju T; Shinohara RT; Vandekar S
    Neurophotonics; 2023 Jan; 10(1):015004. PubMed ID: 36756004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation.
    Afyouni S; Smith SM; Nichols TE
    Neuroimage; 2019 Oct; 199():609-625. PubMed ID: 31158478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of sampling rate on statistical significance for single subject fMRI connectivity analysis.
    James O; Park H; Kim SG
    Hum Brain Mapp; 2019 Aug; 40(11):3321-3337. PubMed ID: 31004386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A variance components model for statistical inference on functional connectivity networks.
    Fiecas M; Cribben I; Bahktiari R; Cummine J
    Neuroimage; 2017 Apr; 149():256-266. PubMed ID: 28130192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of autocorrelation on functional connectivity.
    Arbabshirani MR; Damaraju E; Phlypo R; Plis S; Allen E; Ma S; Mathalon D; Preda A; Vaidya JG; Adali T; Calhoun VD
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):294-308. PubMed ID: 25072392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CLEAN: Leveraging spatial autocorrelation in neuroimaging data in clusterwise inference.
    Park JY; Fiecas M
    Neuroimage; 2022 Jul; 255():119192. PubMed ID: 35398279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered intrinsic functional connectivity in the latent period of epileptogenesis in a temporal lobe epilepsy model.
    Lee H; Jung S; Lee P; Jeong Y
    Exp Neurol; 2017 Oct; 296():89-98. PubMed ID: 28729114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Connectivity of Resting Hemodynamic Signals in Submillimeter Orientation Columns of the Visual Cortex.
    Vasireddi AK; Vazquez AL; Whitney DE; Fukuda M; Kim SG
    Brain Connect; 2016 Oct; 6(8):596-606. PubMed ID: 27461173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing autocorrelation and partial autocorrelation: Asymptotic methods versus resampling techniques.
    Ke Z; Zhang ZJ
    Br J Math Stat Psychol; 2018 Feb; 71(1):96-116. PubMed ID: 28898401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal and physiological correlation to hemodynamic resting-state fluctuations in health and disease.
    Vazquez AL; Murphy MC; Kim SG
    Brain Connect; 2014 Nov; 4(9):727-40. PubMed ID: 25300278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    LiƩgeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical imaging of disrupted functional connectivity following ischemic stroke in mice.
    Bauer AQ; Kraft AW; Wright PW; Snyder AZ; Lee JM; Culver JP
    Neuroimage; 2014 Oct; 99():388-401. PubMed ID: 24862071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals.
    Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S
    Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629
    [No Abstract]   [Full Text] [Related]  

  • 15. Brain segmentation, spatial censoring, and averaging techniques for optical functional connectivity imaging in mice.
    White BR; Padawer-Curry JA; Cohen AS; Licht DJ; Yodh AG
    Biomed Opt Express; 2019 Nov; 10(11):5952-5973. PubMed ID: 31799057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does the resting state connectivity have hemispheric asymmetry? A near-infrared spectroscopy study.
    Medvedev AV
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):400-7. PubMed ID: 23721726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics.
    Bernas A; Barendse EM; Aldenkamp AP; Backes WH; Hofman PAM; Hendriks MPH; Kessels RPC; Willems FMJ; de With PHN; Zinger S; Jansen JFA
    Brain Behav; 2018 Feb; 8(2):e00878. PubMed ID: 29484255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-wavelet transform for multi-subject resting state functional magnetic resonance imaging data.
    Zhou M; Boyd BD; Taylor WD; Kang H
    Stat Med; 2021 Dec; 40(30):6762-6776. PubMed ID: 34596260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.