These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 35295719)

  • 21. Formins and microtubules.
    Bartolini F; Gundersen GG
    Biochim Biophys Acta; 2010 Feb; 1803(2):164-73. PubMed ID: 19631698
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Of microtubules and memory: implications for microtubule dynamics in dendrites and spines.
    Dent EW
    Mol Biol Cell; 2017 Jan; 28(1):1-8. PubMed ID: 28035040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The microtubule-associated protein EML3 regulates mitotic spindle assembly by recruiting the Augmin complex to spindle microtubules.
    Luo J; Yang B; Xin G; Sun M; Zhang B; Guo X; Jiang Q; Zhang C
    J Biol Chem; 2019 Apr; 294(14):5643-5656. PubMed ID: 30723163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Roles of Microtubule-Associated Protein 4 in Wound Healing and Human Diseases.
    Chen Q; Zhang J; Song Z; Huang Y
    Front Biosci (Landmark Ed); 2023 Apr; 28(4):76. PubMed ID: 37114541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microtubule dynamics regulation reconstituted in budding yeast lysates.
    Bergman ZJ; Wong J; Drubin DG; Barnes G
    J Cell Sci; 2018 Sep; 132(4):. PubMed ID: 30185524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase.
    Amin MA; Agarwal S; Varma D
    Cytoskeleton (Hoboken); 2019 Jun; 76(6):398-412. PubMed ID: 31454167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins.
    Ramkumar A; Jong BY; Ori-McKenney KM
    Dev Dyn; 2018 Jan; 247(1):138-155. PubMed ID: 28980356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microtubules and viral infection.
    da Silva ES; Naghavi MH
    Adv Virus Res; 2023; 115():87-134. PubMed ID: 37173066
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms for maintaining microtubule bundles.
    Bratman SV; Chang F
    Trends Cell Biol; 2008 Dec; 18(12):580-6. PubMed ID: 18951798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of β- and α2-adrenergic receptors stimulate tubulin polymerization and promote the association of Gβγ with microtubules in cultured NIH3T3 cells.
    Sierra-Fonseca JA; Bracamontes C; Saldecke J; Das S; Roychowdhury S
    Biochem Biophys Res Commun; 2018 Sep; 503(1):102-108. PubMed ID: 29852176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein 4.1R binds to CLASP2 and regulates dynamics, organization and attachment of microtubules to the cell cortex.
    Ruiz-Saenz A; van Haren J; Sayas CL; Rangel L; Demmers J; Millán J; Alonso MA; Galjart N; Correas I
    J Cell Sci; 2013 Oct; 126(Pt 20):4589-601. PubMed ID: 23943871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered microtubule dynamics in neurodegenerative disease: Therapeutic potential of microtubule-stabilizing drugs.
    Brunden KR; Lee VM; Smith AB; Trojanowski JQ; Ballatore C
    Neurobiol Dis; 2017 Sep; 105():328-335. PubMed ID: 28012891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates.
    Jijumon AS; Krishnan A; Janke C
    Curr Protoc; 2024 Jun; 4(6):e1070. PubMed ID: 38865215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microtubules: A Key to Understand and Correct Neuronal Defects in CDKL5 Deficiency Disorder?
    Barbiero I; De Rosa R; Kilstrup-Nielsen C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31438497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid assembly and collective behavior of microtubule bundles in the presence of polyamines.
    Hamon L; Savarin P; Curmi PA; Pastré D
    Biophys J; 2011 Jul; 101(1):205-16. PubMed ID: 21723831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microtubule cytoskeleton remodeling by acentriolar microtubule-organizing centers at the entry and exit from mitosis in Drosophila somatic cells.
    Moutinho-Pereira S; Debec A; Maiato H
    Mol Biol Cell; 2009 Jun; 20(11):2796-808. PubMed ID: 19369414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion.
    Zhou H; Isozaki N; Fujimoto K; Yokokawa R
    J Nanobiotechnology; 2021 Jul; 19(1):218. PubMed ID: 34281555
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of kinesin-1-based microtubule sliding in Drosophila nervous system development.
    Winding M; Kelliher MT; Lu W; Wildonger J; Gelfand VI
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E4985-94. PubMed ID: 27512046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the Tubulin Language: Molecular Determinants and Readout Mechanisms of the Tubulin Code in Neurons.
    Zocchi R; Compagnucci C; Bertini E; Sferra A
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells.
    Sato Y; Akitsu M; Amano Y; Yamashita K; Ide M; Shimada K; Yamashita A; Hirano H; Arakawa N; Maki T; Hayashi I; Ohno S; Suzuki A
    J Cell Sci; 2013 Oct; 126(Pt 20):4671-83. PubMed ID: 23902687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.