These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35296137)

  • 1. Temperature-Dependent Fluorescence of mPlum Fluorescent Protein from 295 to 20 K.
    Lyu T; Sohn SH; Jimenez R; Joo T
    J Phys Chem B; 2022 Mar; 126(12):2337-2344. PubMed ID: 35296137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States.
    Yoon E; Konold PE; Lee J; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Jun; 7(12):2170-4. PubMed ID: 27214167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Nature of an Extended Stokes Shift in the mPlum Fluorescent Protein.
    Faraji S; Krylov AI
    J Phys Chem B; 2015 Oct; 119(41):13052-62. PubMed ID: 26402581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Far Red Fluorescent Proteins: Where Is the Limit of the Acylimine Chromophore?
    Moron V; Marazzi M; Wanko M
    J Chem Theory Comput; 2019 Jul; 15(7):4228-4240. PubMed ID: 31146524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein.
    Shu X; Wang L; Colip L; Kallio K; Remington SJ
    Protein Sci; 2009 Feb; 18(2):460-6. PubMed ID: 19165727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.
    Konold PE; Yoon E; Lee J; Allen SL; Chapagain PP; Gerstman BS; Regmi CK; Piatkevich KD; Verkhusha VV; Joo T; Jimenez R
    J Phys Chem Lett; 2016 Aug; 7(15):3046-51. PubMed ID: 27447848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant.
    Augustine G; Raghavan S; NumbiRamudu K; Easwaramoorthi S; Shanmugam G; Seetharani Murugaiyan J; Gunasekaran K; Govind C; Karunakaran V; Ayyadurai N
    J Phys Chem B; 2019 Mar; 123(10):2316-2324. PubMed ID: 30789731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen bond flexibility correlates with Stokes shift in mPlum variants.
    Konold P; Regmi CK; Chapagain PP; Gerstman BS; Jimenez R
    J Phys Chem B; 2014 Mar; 118(11):2940-8. PubMed ID: 24611679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the Environment on Shaping the Absorption of Monomeric Infrared Fluorescent Proteins.
    Rathnachalam S; Menger MFSJ; Faraji S
    J Phys Chem B; 2021 Mar; 125(9):2231-2240. PubMed ID: 33626280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast proton shuttling in Psammocora cyan fluorescent protein.
    Kennis JT; van Stokkum IH; Peterson DS; Pandit A; Wachter RM
    J Phys Chem B; 2013 Sep; 117(38):11134-43. PubMed ID: 23534404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Stokes shift in green fluorescent protein variants.
    Abbyad P; Childs W; Shi X; Boxer SG
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20189-94. PubMed ID: 18077381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternate proton acceptor for excited-state proton transfer in green fluorescent protein: rewiring GFP.
    Stoner-Ma D; Jaye AA; Ronayne KL; Nappa J; Meech SR; Tonge PJ
    J Am Chem Soc; 2008 Jan; 130(4):1227-35. PubMed ID: 18179211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond time-resolved fluorescence from blue-emitting chromophore variants Y66F and Y66H of the green fluorescent protein.
    Kummer AD; Wiehler J; Schüttrigkeit TA; Berger BW; Steipe B; Michel-Beyerle ME
    Chembiochem; 2002 Jul; 3(7):659-63. PubMed ID: 12325000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221.
    Bae JE; Kim IJ; Nam KH
    Biochem Biophys Res Commun; 2017 Nov; 493(1):562-567. PubMed ID: 28867188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Effects of Mutagenesis on FusionRed by Using Excited-State QM/MM Dynamics and Classical Force Field Simulations.
    Murphy AR; Hix MA; Walker AR
    Chembiochem; 2023 Jun; 24(12):e202200799. PubMed ID: 36787215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins.
    Krueger TD; Tang L; Chen C; Zhu L; Breen IL; Wachter RM; Fang C
    Protein Sci; 2023 Jan; 32(1):e4517. PubMed ID: 36403093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein.
    van Thor JJ; Georgiev GY; Towrie M; Sage JT
    J Biol Chem; 2005 Sep; 280(39):33652-9. PubMed ID: 16033764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum refinement of protein structures: implementation and application to the red fluorescent protein DsRed.M1.
    Hsiao YW; Sanchez-Garcia E; Doerr M; Thiel W
    J Phys Chem B; 2010 Nov; 114(46):15413-23. PubMed ID: 20977248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM study of the monomeric red fluorescent protein DsRed.M1.
    Sanchez-Garcia E; Doerr M; Hsiao YW; Thiel W
    J Phys Chem B; 2009 Dec; 113(52):16622-31. PubMed ID: 19994834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and structural analysis of a red fluorescent protein from Acropora digitifera.
    Kim SE; Hwang KY; Nam KH
    Protein Sci; 2019 Feb; 28(2):375-381. PubMed ID: 30368951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.