These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 35297051)
1. Texture-aware dual domain mapping model for low-dose CT reconstruction. Wang H; Zhao X; Liu W; Li LC; Ma J; Guo L Med Phys; 2022 Jun; 49(6):3860-3873. PubMed ID: 35297051 [TBL] [Abstract][Full Text] [Related]
2. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network. Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402 [TBL] [Abstract][Full Text] [Related]
3. Total-body low-dose CT image denoising using a prior knowledge transfer technique with a contrastive regularization mechanism. Fu M; Duan Y; Cheng Z; Qin W; Wang Y; Liang D; Hu Z Med Phys; 2023 May; 50(5):2971-2984. PubMed ID: 36542423 [TBL] [Abstract][Full Text] [Related]
5. A Hybrid Framework of Dual-Domain Signal Restoration and Multi-depth Feature Reinforcement for Low-Dose Lung CT Denoising. Chi J; Sun Z; Tian S; Wang H; Wang S J Imaging Inform Med; 2024 Aug; 37(4):1944-1959. PubMed ID: 38424278 [TBL] [Abstract][Full Text] [Related]
6. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
7. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction. Zhang P; Li K Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892 [TBL] [Abstract][Full Text] [Related]
8. A cascade-based dual-domain data correction network for sparse view CT image reconstruction. Li Q; Li R; Wang T; Cheng Y; Qiang Y; Wu W; Zhao J; Zhang D Comput Biol Med; 2023 Oct; 165():107345. PubMed ID: 37603960 [TBL] [Abstract][Full Text] [Related]
9. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network. Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936 [TBL] [Abstract][Full Text] [Related]
10. Dual-domain fusion deep convolutional neural network for low-dose CT denoising. Li Z; Liu Y; Chen Y; Shu H; Lu J; Gui Z J Xray Sci Technol; 2023; 31(4):757-775. PubMed ID: 37212059 [TBL] [Abstract][Full Text] [Related]
11. Self-supervised dual-domain balanced dropblock-network for low-dose CT denoising. An R; Chen K; Li H Phys Med Biol; 2024 Mar; 69(7):. PubMed ID: 38359449 [No Abstract] [Full Text] [Related]
12. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732 [TBL] [Abstract][Full Text] [Related]
13. Low-Dose CT Image Super-resolution Network with Noise Inhibition Based on Feedback Feature Distillation Mechanism. Chi J; Wei X; Sun Z; Yang Y; Yang B J Imaging Inform Med; 2024 Aug; 37(4):1902-1921. PubMed ID: 38378965 [TBL] [Abstract][Full Text] [Related]
14. LRR-CED: low-resolution reconstruction-aware convolutional encoder-decoder network for direct sparse-view CT image reconstruction. Kandarpa VSS; Perelli A; Bousse A; Visvikis D Phys Med Biol; 2022 Jul; 67(15):. PubMed ID: 35738249 [No Abstract] [Full Text] [Related]
15. Self-adaption and texture generation: A hybrid loss function for low-dose CT denoising. Wang Z; Liu M; Cheng X; Zhu J; Wang X; Gong H; Liu M; Xu L J Appl Clin Med Phys; 2023 Sep; 24(9):e14113. PubMed ID: 37571834 [TBL] [Abstract][Full Text] [Related]
16. ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge. Ge Y; Su T; Zhu J; Deng X; Zhang Q; Chen J; Hu Z; Zheng H; Liang D Quant Imaging Med Surg; 2020 Feb; 10(2):415-427. PubMed ID: 32190567 [TBL] [Abstract][Full Text] [Related]
17. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
18. Texture-preserving low dose CT image denoising using Pearson divergence. Oh J; Wu D; Hong B; Lee D; Kang M; Li Q; Kim K Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38688292 [No Abstract] [Full Text] [Related]
19. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765 [TBL] [Abstract][Full Text] [Related]
20. A Review of deep learning methods for denoising of medical low-dose CT images. Zhang J; Gong W; Ye L; Wang F; Shangguan Z; Cheng Y Comput Biol Med; 2024 Mar; 171():108112. PubMed ID: 38387380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]